1. 1. Makkar, H.P., et al., State-of-the-art on use of insects as animal feed. Animal Feed Science and Technology, 2014. 197: p. 1-33. [
DOI:10.1016/j.anifeedsci.2014.07.008]
2. Van Huis, A., Potential of insects as food and feed in assuring food security. Annual review of entomology, 2013. 58: p. 563-583. [
DOI:10.1146/annurev-ento-120811-153704]
3. Alexandratos, N. and J. Bruinsma, World agriculture towards 2030/2050: the 2012 revision. 2012.
4. Rosegrant, M.W., S. Tokgoz, and P. Bhandary, The new normal? A tighter global agricultural supply and demand relation and its implications for food security. American Journal of Agricultural Economics, 2013. 95(2): p. 303-309. [
DOI:10.1093/ajae/aas041]
5. Bruinsma, J., World Agriculture: towards 2015/2030: Summary Report. 2002: Food and Agriculture Organization of the United Nations (FAO).
6. Gustavsson, J., et al., Global food losses and food waste. 2011, FAO Rome.
7. Oonincx, D.G., et al., An exploration on greenhouse gas and ammonia production by insect species suitable for animal or human consumption. PloS one, 2010. 5(12): p. e14445. [
DOI:10.1371/journal.pone.0014445]
8. Llagostera, P.F., et al., The use of insect meal as a sustainable feeding alternative in aquaculture: Current situation, Spanish consumers' perceptions and willingness to pay. Journal of Cleaner Production, 2019. 229: p. 10-21. [
DOI:10.1016/j.jclepro.2019.05.012]
9. Van Huis, A., et al., Edible insects: future prospects for food and feed security. 2013: Food and Agriculture Organization of the United Nations.
10. Hoc, B., et al., Optimization of black soldier fly (Hermetia illucens) artificial reproduction. PloS one, 2019. 14(4): p. e0216160. [
DOI:10.1371/journal.pone.0216160]
11. Burtle, G., et al., Mass Production of Black Soldier Fly Prepupae for Aquaculture Diets. A Manuscript for Aquaculture International. University of Georgia, Tifton Campus, Tifton, GA, 2012.
12. Lalander, C., et al., Effects of feedstock on larval development and process efficiency in waste treatment with black soldier fly (Hermetia illucens). Journal of cleaner production, 2019. 208: p. 211-219. [
DOI:10.1016/j.jclepro.2018.10.017]
13. Koutsos, L., A. McComb, and M. Finke, Insect Composition and Uses in Animal Feeding Applications: A Brief Review. Annals of the Entomological Society of America, 2019. 112(6): p. 544-551. [
DOI:10.1093/aesa/saz033]
14. Do, S., et al., 240 True nutrient and amino acid digestibility of black soldier fly larvae differing in life stage using the precision-fed cecectomized rooster assay. Journal of Animal Science, 2019. 97(Supplement_3): p. 64-65. [
DOI:10.1093/jas/skz258.133]
15. Onsongo, V., et al., Insects for income generation through animal feed: Effect of dietary replacement of soybean and fish meal with black soldier fly meal on broiler growth and economic performance. Journal of economic entomology, 2018. 111(4): p. 1966-1973. [
DOI:10.1093/jee/toy118]
16. Belghit, I., et al., Black soldier fly larvae meal can replace fish meal in diets of sea-water phase Atlantic salmon (Salmo salar). Aquaculture, 2019. 503: p. 609-619. [
DOI:10.1016/j.aquaculture.2018.12.032]
17. Marshall, S., N. Woodley, and M. Hauser, The historical spread of the Black Soldier Fly, Hermetia illucens (L.)(Diptera, Stratiomyidae, Hermetiinae), and its establishment in Canada. The Journal of the Entomological Society of Ontario, 2015. 146.
18. Diener, S., C. Zurbrügg, and K. Tockner, Conversion of organic material by black soldier fly larvae: establishing optimal feeding rates. Waste Management & Research, 2009. 27(6): p. 603-610. [
DOI:10.1177/0734242X09103838]
19. Bradley, S.W. and D. Sheppard, House fly oviposition inhibition by larvae ofHermetia illucens, the black soldier fly. Journal of Chemical Ecology, 1984. 10(6): p. 853-859. [
DOI:10.1007/BF00987968]
20. Oliveira, F.R., K. Doelle, and R. Smith, External morphology of Hermetia illucens Stratiomyidae: Diptera (L. 1758) based on electron microscopy. Annual Research & Review in Biology, 2016: p. 1-10. [
DOI:10.9734/ARRB/2016/22973]
21. Cranshaw, W. and D. Shetlar, Garden insects of North America: The ultimate guide to backyard bugs. 2017: Princeton University Press. [
DOI:10.2307/j.ctt1qft28g]
22. Kim, W., et al., Biochemical characterization of digestive enzymes in the black soldier fly, Hermetia illucens (Diptera: Stratiomyidae). Journal of Asia-Pacific Entomology, 2011. 14(1): p. 11-14. [
DOI:10.1016/j.aspen.2010.11.003]
23. De Smet, J., et al., Microbial community dynamics during rearing of black soldier fly larvae (Hermetia illucens) and impact on exploitation potential. Appl. Environ. Microbiol., 2018. 84(9): p. e02722-17. [
DOI:10.1128/AEM.02722-17]
24. Nguyen, T.T., J.K. Tomberlin, and S. Vanlaerhoven, Ability of black soldier fly (Diptera: Stratiomyidae) larvae to recycle food waste. Environmental entomology, 2015. 44(2): p. 406-410. [
DOI:10.1093/ee/nvv002]
25. Bondari, K. and D. Sheppard, Soldier fly, Hermetia illucens L., larvae as feed for channel catfish, Ictalurus punctatus (Rafinesque), and blue tilapia, Oreochromis aureus (Steindachner). Aquaculture Research, 1987. 18(3): p. 209-220. [
DOI:10.1111/j.1365-2109.1987.tb00141.x]
26. Akhtar, Y. and M. Isman, Insects as an alternative protein source, in Proteins in food processing. 2018, Elsevier. p. 263-288. [
DOI:10.1016/B978-0-08-100722-8.00011-5]
27. Spranghers, T., et al., Nutritional composition of black soldier fly (Hermetia illucens) prepupae reared on different organic waste substrates. Journal of the Science of Food and Agriculture, 2017. 97(8): p. 2594-2600. [
DOI:10.1002/jsfa.8081]
28. Palma, L., et al., Managing high fiber food waste for the cultivation of black soldier fly larvae. npj Science of Food, 2019. 3(1): p. 1-7. [
DOI:10.1038/s41538-019-0047-7]
29. Cai, M., et al., Bioconversion-Composting of Golden Needle Mushroom (Flammulina velutipes) Root Waste by Black Soldier Fly (Hermetia illucens, Diptera: Stratiomyidae) Larvae, to Obtain Added-Value Biomass and Fertilizer. Waste and biomass valorization, 2019. 10(2): p. 265-273. [
DOI:10.1007/s12649-017-0063-2]
30. Kawasaki, K., et al., Evaluation of Black Soldier Fly (Hermetia illucens) Larvae and Pre-Pupae Raised on Household Organic Waste, as Potential Ingredients for Poultry Feed. Animals, 2019. 9(3): p. 98. [
DOI:10.3390/ani9030098]
31. Mazza, L., et al., Management of chicken manure using black soldier fly (Diptera: Stratiomyidae) larvae assisted by companion bacteria. Waste Management, 2020. 102: p. 312-318. [
DOI:10.1016/j.wasman.2019.10.055]
32. Myers, H.M., et al., Development of black soldier fly (Diptera: Stratiomyidae) larvae fed dairy manure. Environmental entomology, 2014. 37(1): p. 11-15. [
DOI:10.1093/ee/37.1.11]
33. Liu, T., et al., Effects of black soldier fly larvae (Diptera: Stratiomyidae) on food waste and sewage sludge composting. Journal of Environmental Management, 2020. 256: p. 109967. [
DOI:10.1016/j.jenvman.2019.109967]
34. Dzepe, D., et al., Influence of larval density, substrate moisture content and feedstock ratio on life history traits of black soldier fly larvae. Journal of Insects as Food and Feed, 2019: p. 1-8.
35. Sánchez-Muros, M.-J., F.G. Barroso, and F. Manzano-Agugliaro, Insect meal as renewable source of food for animal feeding: a review. Journal of Cleaner Production, 2014. 65: p. 16-27. [
DOI:10.1016/j.jclepro.2013.11.068]
36. Bale, J.S., et al., Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Global change biology, 2002. 8(1): p. 1-16. [
DOI:10.1046/j.1365-2486.2002.00451.x]
37. Saska, P., et al., Temperature effects on pitfall catches of epigeal arthropods: a model and method for bias correction. Journal of Applied Ecology, 2013. 50(1): p. 181-189. [
DOI:10.1111/1365-2664.12023]
38. Goulson, D., et al., Predicting calyptrate fly populations from the weather, and probable consequences of climate change. Journal of Applied Ecology, 2005. 42(5): p. 795-804. [
DOI:10.1111/j.1365-2664.2005.01078.x]
39. Salum, J., et al., Demographic parameters of the two main fruit fly (D iptera: Tephritidae) species attacking mango in C entral T anzania. Journal of Applied Entomology, 2014. 138(6): p. 441-448. [
DOI:10.1111/jen.12044]
40. Logan, J., et al., An analytic model for description of temperature dependent rate phenomena in arthropods. Environmental Entomology, 1976. 5(6): p. 1133-1140. [
DOI:10.1093/ee/5.6.1133]
41. Summers, C., R. Coviello, and A.P. Gutierrez, Influence of constant temperatures on the development and reproduction of Acyrthosiphon kondoi (Homoptera: Aphididae). Environmental Entomology, 1984. 13(1): p. 236-242. [
DOI:10.1093/ee/13.1.236]
42. Gabre, R.M., F.K. Adham, and H. Chi, Life table of Chrysomya megacephala (Fabricius)(Diptera: Calliphoridae). Acta oecologica, 2005. 27(3): p. 179-183. [
DOI:10.1016/j.actao.2004.12.002]
43. Karimi-Malati, A., et al., Life table parameters and survivorship of Spodoptera exigua (Lepidoptera: Noctuidae) at constant temperatures. Environmental Entomology, 2014. 43(3): p. 795-803. [
DOI:10.1603/EN11272]