1. 1. Gareau BJ, Crow B. Ken Conca, Governing Water: Contentious Transnational Politics and Global Institution Building. Int Environ Agreements: Politics, Law and Economics 2006; 6(3):317-320. [
DOI:10.1007/s10784-006-9007-1]
2. Oki T, Kanae S. Global hydrological cycles and world water resources. Science, 2006; 313(5790): 1068-1072. [
DOI:10.1126/science.1128845]
3. Pera-Titus M, Garcı́a-Molina V, Banos MA, Gimenez J, Esplugas S. Degradation of chlorophenols by means of advanced oxidation processes: a general review. Appl Catal B: Environ 2004; 47(4): 219-256. [
DOI:10.1016/j.apcatb.2003.09.010]
4. Bin X, Nai-Yun G, Xiao-Feng S, Sheng-Ji X, Min R, Marie-Odile S, Christel C, Jian-Fu Z. Photochemical degradation of diethyl phthalate with UV/H2O2 J Hazard Mater 2007; B139:132-139. [
DOI:10.1016/j.jhazmat.2006.06.026]
5. Mohadesi M, Shokri A. Evaluation of Fenton and photo-Fenton processes for the removal of p-chloronitrobenzene in aqueous environment using Box-Behnken design method Desal Wat Treat 2017; 81(1): 199-208. [
DOI:10.5004/dwt.2017.21182]
6. Zhu XD, Wang YJ, Sun RJ, Zhou D M. Photo catalytic degradation of tetracycline in aqueous solution by nanosized TiO2. Chemosphere, 2013; 92(8): 925-932. [
DOI:10.1016/j.chemosphere.2013.02.066]
7. Shokri A, Mahanpoor K, Soodbar D. Degradation of Ortho-Toluidine in petrochemical wastewater by Ozonation, UV/O3, O3/H2O2 and UV/O3/H2O2 processes. Desal. Water Treat 2016; 57(35):16473-16482. [
DOI:10.1080/19443994.2015.1085454]
8. Shokri A, Mahanpoor K, Soodbar D. Evaluation of a modified TiO2 (GO-B-TiO2) photo catalyst for degradation of 4-nitrophenol in petrochemical wastewater by response surface methodology based on the central composite design, J Environ Chem Eng 2016; 4: 585-598. [
DOI:10.1016/j.jece.2015.11.007]
9. Gharbani P, Mehrizad A. Heterogeneous catalytic ozonation process for removal of 4-chloro-2-nitrophenol from aqueous solutions. J Saudi Chem Society 2014; 18(5): 601-605. [
DOI:10.1016/j.jscs.2012.07.013]
10. Shokri A. Investigation of UV/H2O2 process for removal of Ortho-Toluidine from industrial wastewater by response surface methodology based on the central composite design, Desal Water Treat 2017;58: 258-266. [
DOI:10.5004/dwt.2017.0292]
11. Trovo AG, Melo SAS, Nogueira RFP. Photo degradation of the pharmaceuticals amoxicillin, bezafibrate and paracetamol by the photo-Fenton process-application to sewage treatment plant effluent. J Photochem Photobiol A: Chem 2008; 198(2-3): 215-220. [
DOI:10.1016/j.jphotochem.2008.03.011]
12. Babuponnusami A, Muthukumar K. A review on Fenton and improvements to the Fenton process for wastewater treatment, J Environ Chem Eng 2014; 2(1): 557-572. [
DOI:10.1016/j.jece.2013.10.011]
13. da Silva Leite L, de Souza Maselli B, de Aragão Umbuzeiro G, Nogueira R F P. Monitoring ecotoxicity of disperse red 1 dye during photo-Fenton degradation. Chemosphere 2016; 148: 511-517. [
DOI:10.1016/j.chemosphere.2016.01.053]
14. Peralta-Hernandez JM, Vijay S, Rodriguez-Narvaez O, Pacheco-Alvarez MA. Chapter 9 - Photo and Solar Fenton Processes for Wastewater Treatment, Electrochemical Water and Wastewater Treatment, 2018; 9: 223-237. [
DOI:10.1016/B978-0-12-813160-2.00009-2]
15. Garcia-Segura S, Bellotindos LM, Yao-Hui H, Brillas E, Ming-Chun L. Fluidized-bed Fenton process as alternative wastewater treatment technology-A review, J Taiwan Institute Chem Eng 2016; 67:211-225. [
DOI:10.1016/j.jtice.2016.07.021]
16. Clarizia L, Russo D, Di Somma, I, Marotta R, Andreozzi R. Homogeneous photo-Fenton processes at near neutral pH: a review. Appl Catal B: Environ 2017; 209:358-371. [
DOI:10.1016/j.apcatb.2017.03.011]
17. Moon BH, Park YB, Park KH. Fenton oxidation of Orange II by pre-reduction using nanoscale zero-valent iron. Desalination 2011; 268(1-3):249-252. [
DOI:10.1016/j.desal.2010.10.036]
18. Huang Y H, Huang YF, Chang PS, Chen CY. Comparative study of oxidation of dye-Reactive Black B by different advanced oxidation processes: Fenton, electro-Fenton and photo-Fenton. J Hazard Mater 2008; 154(1-3): 655-662. [
DOI:10.1016/j.jhazmat.2007.10.077]
19. American Public Health Association, American Water Works Association, Water Pollution Control Federation, & Water Environment Federation. (1915). Standard methods for the examination of water and wastewater (Vol. 2). American Public Health Association.
20. El-sousy K, Hussen A, Hartani K, El Aila H. Elimination of organic pollutants using supported catalysts with hydrogen peroxide. J J Chem 2007; 2(1), 97-103.
21. Ahmadi M, Rahmani K, Rahmani A, Rahmani H. Removal of benzotriazole by Photo-Fenton like process using nano zero-valent iron&58; response surface methodology with a Box-Behnken design, Polish J Chem Technol 2017; 19(1): 104-112. [
DOI:10.1515/pjct-2017-0015]
22. Rumky J, Ncibi MC, Burgos-Castillo R C, Deb A, Sillanpa M. Optimization of integrated ultrasonic-Fenton system for metal removal and dewatering of anaerobically digested sludge by Box-Behnken design. Science of the Total Environ 2018; 645:573-584. [
DOI:10.1016/j.scitotenv.2018.07.125]
23. Montgomery DC. Design and analysis of experiments John Wiley. 2001, New York.
24. Buyukada M. Prediction of Photo catalytic Degradation and Mineralization Efficiencies of Basic Blue 3 Using TiO2 by Nonlinear Modeling Based on Box-Behnken Design. Arab J Sci Eng 2016; 41: 2631-2646. [
DOI:10.1007/s13369-016-2175-6]
25. Jiang CC, Pang SY, Ouyang F, Ma J, Jiang J. A new insight into Fenton and Fenton-like processes for water treatment. J Hazard Mater 2010; 174: 813-817. [
DOI:10.1016/j.jhazmat.2009.09.125]
26. Xu HY, Liu WC, Qi SY, Li Y, Zhao Y, Li JW. Kinetics and optimization of the decoloration of dyeing wastewater by a schorl-catalyzed Fenton-like reaction. J Serb Chem Soc 2014; 79: 361-377. [
DOI:10.2298/JSC130225075X]
27. Bali U, Catalkaya EC, Sengul F. Photochemical degradation and mineralization of phenol: A comparative study. J Environ Sci Health: Part A 2003; 38 : 2259-2275. [
DOI:10.1081/ESE-120023373]
28. Zhao XK, Yang GP, Wang YJ, Gao XC. Photochemical degradation of dimethyl phthalate by Fenton reagent. J Photochem Photobiol A Chem 2004; 161 : 215-220. [
DOI:10.1016/S1010-6030(03)00344-7]
29. Catalkaya EC, Sengul F. Application of Box-Wilson experimental design method for the photo degradation of bakery's yeast industry with UV/H2O2 and UV/H2O2/Fe (II) process. J Hazard Mater 2005; 128: 201-207. [
DOI:10.1016/j.jhazmat.2005.07.052]
30. Mohadesi M, Shokri A, Evaluation of Fenton and photo-Fenton processes for the removal of p-chloronitrobenzene in aqueous environment using Box-Behnken design method, Desal. Water Treat 2017; 81:199-208. [
DOI:10.5004/dwt.2017.21182]
31. Lioua MJ, Lub MC, Chena JN. Oxidation of explosives by Fenton and photo-Fenton processes. Water Res 2003; 37: 3172-3179. [
DOI:10.1016/S0043-1354(03)00158-1]
32. Mansoorian H J, Bazrafshan E , Yari A R , Alizadeh M, Removal of Azo Dyes From Aqueous Solution Using Fenton and Modified Fenton Processes, Health Scope. 2014;3(2): 15507. [
DOI:10.17795/jhealthscope-15507]
33. Raut-Jadhav S, Saharan V K, Pinjari D, Sonawane S, Saini D, Pandit AB. Synergetic effect of combination of AOP's (Hydrodynamic Cavitation and H2O2) on the degradation of neonicotinoid class of insecticide. J Hazard Mater 261; 2013: 139-147. [
DOI:10.1016/j.jhazmat.2013.07.012]