Volume 8, Issue 4 (Autumn 2019)                   Arch Hyg Sci 2019, 8(4): 259-265 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Bagheri Z, karimi Z, Ghoreishi R, Daneshpoor Z, Mohebi S. Sleep Quality of Multiple Sclerosis Patients in Qom, Iran, in 2018. Arch Hyg Sci 2019; 8 (4) :259-265
URL: http://jhygiene.muq.ac.ir/article-1-411-en.html
1- a Department of Public Health, Faculty of Health, Qom University of Medical Sciences, Qom, Iran.
2- b Department of Health Education and Health Promotion, Faculty of Health, Qom University of Medical Sciences, Qom, Iran
Abstract:   (2505 Views)
Background & Aims of the Study: Sleep disorders and poor sleep quality can lead to daytime sleepiness, fatigue, and depression as well as physical diseases. Such disorders are prevalent among multiple sclerosis (MS) patients; therefore, the present study aimed to determine the quality of sleep in MS patients in Qom, Iran, in 2018.
Materials and Methods: The present descriptive-analytical study was performed on 272 MS patients who were members of the MS Society of Qom, Iran. The samples were selected based on the inclusion and exclusion criteria using simple random sampling technique. The data were collected using a demographic form and Pittsburgh Sleep Quality Index. Finally, the collected data were analyzed in SPSS software (version 21) using descriptive statistics and analytical statistical tests. A p-value of less than 0.05 was considered statistically significant.
Results: Based on the findings, the mean score of sleep quality was 11.11±4.35. A total of 12.86% and 48.2% of the subjects had severe had moderate sleep disorders, respectively. However, 5.14% of them were not conflicted with any type of sleep disorder. Moreover, the sleep quality score had a significant relationship with age, occupation, marital status, and disease duration (P<0.05). However, the results of independent t-test showed no significant relationship between the mean sleep quality score and gender (P=0.578).
Conclusion: A significant percentage of patients suffered from some kind of sleep disorder. Therefore, it is recommended to include regular sleep hygiene and sleep quality improvement training in the routine care of such patients.
Full-Text [PDF 621 kb]   (689 Downloads) |   |   Full-Text (HTML)  (772 Views)  
Type of Study: Original Article | Subject: General
Received: 2019/09/4 | Accepted: 2020/01/20 | Published: 2020/02/8

References
1. Eslami G, Hashemi A, Karimi Yazdi MM, Esmaeili Benvidi M, Khiabani Rad P, Moradi S ; Fallah F and et al. Antibacterial Effects of Zataria multiflora, Ziziphus, Chamomile and Myrtus communis Methanolic Extracts on IMP-Type Metallo-Beta-Lactamase-Producing Pseudomonas aeruginosa. Arch Clin Infect Dis. 2016; 11(1): e32413 , doi: 10.5812 [DOI:10.5812/archcid.32413]
2. Franco M, Caiaffa-Filho H, Burattini M, Rossi F. Metallo-beta-lactamases among imipenem-resistant P. aeruginosa in a Brazilian university hospital. Clinics (Sao Paulo) 2010; 65:825-829. PubMed: PMC2954731. [DOI:10.1590/S1807-59322010000900002]
3. Peng Y, Shi J, Bu T, Li Y, Ye X, Chen X, Yaoa Z. Alarming and increasing prevalence of multidrug resistant Pseudomonas aeruginosa among healthcare-associated infections in China. JGAR 2015; 3: 155-160. doi: 10.1016/j.jgar.2015.04.001. [DOI:10.1016/j.jgar.2015.04.001]
4. Teixeira B, Rodulfo H, Carreño N, Guzmán M, Salazar E, De Donato A. Aminoglycoside resistance genes in pseudomonas aeruginosa isolates from cumana, Venezuela. Rev Inst Med Trop Sao Paulo. 2016; 58: 13. doi: 10.1590/S1678-9946201658013. PMID: 27007556. [DOI:10.1590/S1678-9946201658013]
5. Islam S, Oh H, Jalal S, Karpati F, Ciofu O, Høiby N, et al. Chromosomal mechanisms of aminoglycoside resistance in Pseudomonas aeruginosa isolates from cystic fibrosis patients. Clin Microbiol Infect. 2009; 15:60-6. doi: 10.1111/j.1469-0691.2008.02097.x. [DOI:10.1111/j.1469-0691.2008.02097.x]
6. Sadovskay I, Vinogradov E, Li J, Hachani A, Kowalska K, Filloux A. H igh-level antibiotic resistance in Pseudomonas aeruginosa biofilm: then dvB gene is involved in the production of highly glycerol-phosphory lated b-(1 R3)-glucans, which bind aminoglycosides. Glycobiol. 2010; 20: 895-904, doi: 10.1093/glycob/cwq047. [DOI:10.1093/glycob/cwq047]
7. Ramirez MS, Tolmasky ME. Aminoglycoside modifying enzymes. Drug Resist Updates 2010;13(6):151-171. doi: 10.1016/j.drup.2010.08.003. [DOI:10.1016/j.drup.2010.08.003]
8. Poole K. Pseudomonas aeruginosa: resistance to the max. Front Microbiol. 2011; 2: 65. doi: 10.3389/fmicb.2011.00065. [DOI:10.3389/fmicb.2011.00065]
9. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; twenty first informational supplement. CLSI document M100-S21. CLSI 2011 Wayne, PA.
10. Chatterjee M, Anju CP, Biswas L, Anil Kumar V, Gopi Mohan C, Biswas R. Antibiotic resistance in Pseudomonas aeruginosa and alternative therapeutic options. Int J Med Microbiol. 2016; 306(1): 48-58. PMID: 26687205 DOI: 10.1016/j.ijmm.2015.11.004. [DOI:10.1016/j.ijmm.2015.11.004]
11. Tarashi S, Goudarzi H, Erfanimanesh S, Pormohammad A, HashemiA. Phenotypic and Molecular Detection of Metallo-Beta-Lactamase Genes Among Imipenem Resistant Pseudomonas aeruginosa and Acinetobacter baumannii Strains Isolated From Patients with Burn Injuries. Arch Clin Infect Dis. 2016; 11(4): e39036. doi: 10.5812/archcid.39036. [DOI:10.5812/archcid.39036]
12. Adabi M, Talebi Taher M, Arbabi L, Afshar M, Fathizadeh S, Minaeian S, et al. Determination of Antibiotic Resistance Pattern of Pseudomonas aeruginosa Strains Isolated from Patients with Burn Wounds . J Ardabil Univ Med Sci. 2015; 15 (1): 66-74.
13. Goudarzi H, Taherpour A, Fallah F, Pourkaveh B, Erfanimanesh S, Hashemi A. Laboratory Detection of Carbapenemases in Gram-Negative Bacteria. Arch Clin Infect Dis. 2016; 11(2):e32816. doi: 10.5812/archcid.32816. [DOI:10.5812/archcid.32816]
14. Michalska AD, Sacha PT, Ojdana D, Wieczorek A, Tryniszewska E. Prevalence of resistance to aminoglycosides and fluoroquinolones among Pseudomonas aeruginosa strains in a University Hospital in Northeastern Poland. Braz J Microbiol. 2014; 45(4): 1455-8. PMID: 25763054. [DOI:10.1590/S1517-83822014000400041]
15. Bhatt P, Rathi KR, Hazra S, Sharma A, Shete V. Prevalence of multidrug resistant Pseudomonas aeruginosa infection in burn patients at a tertiary care centre. India J Burns. 2015; 23(1): 56. . doi: 10.4103/0971- 653X.171656. [DOI:10.4103/0971-653X.171656]
16. Kashfi M, Hashemi A, Eslami G, Sadredin Amin M, Tarashi S, et al. The Prevalence of Aminoglycoside-Modifying Enzyme Genes Among Pseudomonas aeruginosa Strains Isolated From Burn Patients, Arch Clin Infect Dis. 2017; 12(1):e40896. doi: 10.5812/archcid.40896. [DOI:10.5812/archcid.40896]
17. Vaziri F, Peerayeh SN, Nejad QB, Farhadian A. The prevalence of aminoglycoside-modifying enzyme genes (aac (6')-I, aac (6')-II, ant (2")-I, aph (3')-VI) in Pseudomonas aeruginosa. Clinics (Sao Paulo). 2011; 66(9):1519-22. doi:org/10.1590/S1807-59322011000900002.
18. Dubois V, Arpin C, Dupart V, Scavelli A, Coulange L, Andre C, et al. Beta-lactam and aminoglycoside resistance rates and mechanisms among Pseudomonas aeruginosa in French general practice (community and private healthcare centres). J Antimicrob Chemother. 2008; 62(2):316-23. doi: 1 0.1093/jac/dkn174. [DOI:10.1093/jac/dkn174]
19. Asghar A, Ahmed O. Prevalence of aminoglycoside resistance genes in Pseudomonas aeruginosa isolated from a tertiary care hospital in Makkah, KSA. Clinical Practice (Therapy) 2018; 15(2): 1-7. [DOI:10.4172/clinical-practice.1000391]
20. Kim JY, Park YJ, Kwon HJ, Han K, Kang MW, Woo GJ. Occurrence and mechanisms of amikacin resistance and its association with beta-lactamases in Pseudomonas aeruginosa: a Korean nationwide study. J Antimicrob Chemother. 2008; 62(3):479-83. doi: 10.1093/jac/dkn244. [DOI:10.1093/jac/dkn244]
21. Eslami G, Hashemi A, Karimi Yazdi MM, Esmaeili Benvidi M, Khiabani Rad P, Moradi S ; Fallah F and et al. Antibacterial Effects of Zataria multiflora, Ziziphus, Chamomile and Myrtus communis Methanolic Extracts on IMP-Type Metallo-Beta-Lactamase-Producing Pseudomonas aeruginosa. Arch Clin Infect Dis. 2016; 11(1): e32413 , doi: 10.5812 [DOI:10.5812/archcid.32413]
22. Franco M, Caiaffa-Filho H, Burattini M, Rossi F. Metallo-beta-lactamases among imipenem-resistant P. aeruginosa in a Brazilian university hospital. Clinics (Sao Paulo) 2010; 65:825-829. PubMed: PMC2954731. [DOI:10.1590/S1807-59322010000900002]
23. Peng Y, Shi J, Bu T, Li Y, Ye X, Chen X, Yaoa Z. Alarming and increasing prevalence of multidrug resistant Pseudomonas aeruginosa among healthcare-associated infections in China. JGAR 2015; 3: 155-160. doi: 10.1016/j.jgar.2015.04.001. [DOI:10.1016/j.jgar.2015.04.001]
24. Teixeira B, Rodulfo H, Carreño N, Guzmán M, Salazar E, De Donato A. Aminoglycoside resistance genes in pseudomonas aeruginosa isolates from cumana, Venezuela. Rev Inst Med Trop Sao Paulo. 2016; 58: 13. doi: 10.1590/S1678-9946201658013. PMID: 27007556. [DOI:10.1590/S1678-9946201658013]
25. Islam S, Oh H, Jalal S, Karpati F, Ciofu O, Høiby N, et al. Chromosomal mechanisms of aminoglycoside resistance in Pseudomonas aeruginosa isolates from cystic fibrosis patients. Clin Microbiol Infect. 2009; 15:60-6. doi: 10.1111/j.1469-0691.2008.02097.x. [DOI:10.1111/j.1469-0691.2008.02097.x]
26. Sadovskay I, Vinogradov E, Li J, Hachani A, Kowalska K, Filloux A. H igh-level antibiotic resistance in Pseudomonas aeruginosa biofilm: then dvB gene is involved in the production of highly glycerol-phosphory lated b-(1 R3)-glucans, which bind aminoglycosides. Glycobiol. 2010; 20: 895-904, doi: 10.1093/glycob/cwq047. [DOI:10.1093/glycob/cwq047]
27. Ramirez MS, Tolmasky ME. Aminoglycoside modifying enzymes. Drug Resist Updates 2010;13(6):151-171. doi: 10.1016/j.drup.2010.08.003. [DOI:10.1016/j.drup.2010.08.003]
28. Poole K. Pseudomonas aeruginosa: resistance to the max. Front Microbiol. 2011; 2: 65. doi: 10.3389/fmicb.2011.00065. [DOI:10.3389/fmicb.2011.00065]
29. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; twenty first informational supplement. CLSI document M100-S21. CLSI 2011 Wayne, PA.
30. Chatterjee M, Anju CP, Biswas L, Anil Kumar V, Gopi Mohan C, Biswas R. Antibiotic resistance in Pseudomonas aeruginosa and alternative therapeutic options. Int J Med Microbiol. 2016; 306(1): 48-58. PMID: 26687205 DOI: 10.1016/j.ijmm.2015.11.004. [DOI:10.1016/j.ijmm.2015.11.004]
31. Tarashi S, Goudarzi H, Erfanimanesh S, Pormohammad A, HashemiA. Phenotypic and Molecular Detection of Metallo-Beta-Lactamase Genes Among Imipenem Resistant Pseudomonas aeruginosa and Acinetobacter baumannii Strains Isolated From Patients with Burn Injuries. Arch Clin Infect Dis. 2016; 11(4): e39036. doi: 10.5812/archcid.39036. [DOI:10.5812/archcid.39036]
32. Adabi M, Talebi Taher M, Arbabi L, Afshar M, Fathizadeh S, Minaeian S, et al. Determination of Antibiotic Resistance Pattern of Pseudomonas aeruginosa Strains Isolated from Patients with Burn Wounds . J Ardabil Univ Med Sci. 2015; 15 (1): 66-74.
33. Goudarzi H, Taherpour A, Fallah F, Pourkaveh B, Erfanimanesh S, Hashemi A. Laboratory Detection of Carbapenemases in Gram-Negative Bacteria. Arch Clin Infect Dis. 2016; 11(2):e32816. doi: 10.5812/archcid.32816. [DOI:10.5812/archcid.32816]
34. Michalska AD, Sacha PT, Ojdana D, Wieczorek A, Tryniszewska E. Prevalence of resistance to aminoglycosides and fluoroquinolones among Pseudomonas aeruginosa strains in a University Hospital in Northeastern Poland. Braz J Microbiol. 2014; 45(4): 1455-8. PMID: 25763054. [DOI:10.1590/S1517-83822014000400041]
35. Bhatt P, Rathi KR, Hazra S, Sharma A, Shete V. Prevalence of multidrug resistant Pseudomonas aeruginosa infection in burn patients at a tertiary care centre. India J Burns. 2015; 23(1): 56. . doi: 10.4103/0971- 653X.171656. [DOI:10.4103/0971-653X.171656]
36. Kashfi M, Hashemi A, Eslami G, Sadredin Amin M, Tarashi S, et al. The Prevalence of Aminoglycoside-Modifying Enzyme Genes Among Pseudomonas aeruginosa Strains Isolated From Burn Patients, Arch Clin Infect Dis. 2017; 12(1):e40896. doi: 10.5812/archcid.40896. [DOI:10.5812/archcid.40896]
37. Vaziri F, Peerayeh SN, Nejad QB, Farhadian A. The prevalence of aminoglycoside-modifying enzyme genes (aac (6')-I, aac (6')-II, ant (2")-I, aph (3')-VI) in Pseudomonas aeruginosa. Clinics (Sao Paulo). 2011; 66(9):1519-22. doi:org/10.1590/S1807-59322011000900002.
38. Dubois V, Arpin C, Dupart V, Scavelli A, Coulange L, Andre C, et al. Beta-lactam and aminoglycoside resistance rates and mechanisms among Pseudomonas aeruginosa in French general practice (community and private healthcare centres). J Antimicrob Chemother. 2008; 62(2):316-23. doi: 1 0.1093/jac/dkn174. [DOI:10.1093/jac/dkn174]
39. Asghar A, Ahmed O. Prevalence of aminoglycoside resistance genes in Pseudomonas aeruginosa isolated from a tertiary care hospital in Makkah, KSA. Clinical Practice (Therapy) 2018; 15(2): 1-7. [DOI:10.4172/clinical-practice.1000391]
40. Kim JY, Park YJ, Kwon HJ, Han K, Kang MW, Woo GJ. Occurrence and mechanisms of amikacin resistance and its association with beta-lactamases in Pseudomonas aeruginosa: a Korean nationwide study. J Antimicrob Chemother. 2008; 62(3):479-83. doi: 10.1093/jac/dkn244. [DOI:10.1093/jac/dkn244]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Archives of Hygiene Sciences

Designed & Developed by : Yektaweb