Volume 8, Issue 4 (Autumn 2019)                   Arch Hyg Sci 2019, 8(4): 253-258 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zarei Yazdeli M, Alipanah H, Ghazaei C. Frequency of ant(2")-I and aac(6')-II Genes in the Clinical Isolates of Pseudomonas aeruginosa from Shahid Sadoughi Hospital in Yazd, Iran.. Arch Hyg Sci 2019; 8 (4) :253-258
URL: http://jhygiene.muq.ac.ir/article-1-393-en.html
1- Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences,Yazd, Iran.
2- Department of Microbiology, Borujerd Branch, Islamic Azad University, Borujerd, Iran.
3- Department of Microbiology, University of Mohaghegh Ardabili, Ardabil, Iran
Abstract:   (2378 Views)
Background & Aims of the Study: Pseudomonas aeruginosa (P. aeruginosa) is the common cause of nosocomial infections, especially among patients. The aim of the present study was to investigate the occurrence of aminoglycoside resistance and prevalence of the resistance-modifying enzyme genes aac(6')-II and ant(2")-I  in P. aeruginosa isolates from the clinical samples of hospitalized patients in Yazd, Iran.
Materials and Methods: This cross-sectional study was carried out on P. aeruginosa isolates during March 2016 to March 2017. All clinical samples were initially identified by the standard biochemical method, and their aminoglycoside resistance was studied using the disc diffusion method according to Clinical and Laboratory Standards Institute recommendations. Polymerase chain reaction was conducted for the detection of aminoglycoside resistance using the specific primers of aac(6')-II and ant(2")-I genes.
Results: A total of 144 isolates were evaluated for antibiotic susceptibility testing. The resistance of P. aeruginosa isolates to the tested antibiotics was reported as 118 (81.9%) isolates to kanamycin, 91 (63.2%) isolates to gentamicin, 80 (55.6%) isolates to tobramycin, and 84 (58.3%) isolates to amikacin. The aac(6')-II and ant(2")-I genes were detected in 93 (64.6%) and 114 (79.2%) P. aeruginosa isolates, respectively.
Conclusion: Aminoglycoside resistance in P. aeruginosa remains a significant problem. Therefore, there will be considerable local surveillance of aminoglycoside resistance profile.
Full-Text [PDF 425 kb]   (526 Downloads) |   |   Full-Text (HTML)  (743 Views)  
Type of Study: Original Article | Subject: Microbiology
Received: 2019/07/6 | Accepted: 2019/11/30 | Published: 2019/12/31

References
1. Eslami G, Hashemi A, Karimi Yazdi MM, Esmaeili Benvidi M, Khiabani Rad P, Moradi S ; Fallah F and et al. Antibacterial Effects of Zataria multiflora, Ziziphus, Chamomile and Myrtus communis Methanolic Extracts on IMP-Type Metallo-Beta-Lactamase-Producing Pseudomonas aeruginosa. Arch Clin Infect Dis. 2016; 11(1): e32413 , doi: 10.5812 [DOI:10.5812/archcid.32413]
2. Franco M, Caiaffa-Filho H, Burattini M, Rossi F. Metallo-beta-lactamases among imipenem-resistant P. aeruginosa in a Brazilian university hospital. Clinics (Sao Paulo) 2010; 65:825-829. PubMed: PMC2954731. [DOI:10.1590/S1807-59322010000900002]
3. Peng Y, Shi J, Bu T, Li Y, Ye X, Chen X, Yaoa Z. Alarming and increasing prevalence of multidrug resistant Pseudomonas aeruginosa among healthcare-associated infections in China. JGAR 2015; 3: 155-160. doi: 10.1016/j.jgar.2015.04.001. [DOI:10.1016/j.jgar.2015.04.001]
4. Teixeira B, Rodulfo H, Carreño N, Guzmán M, Salazar E, De Donato A. Aminoglycoside resistance genes in pseudomonas aeruginosa isolates from cumana, Venezuela. Rev Inst Med Trop Sao Paulo. 2016; 58: 13. doi: 10.1590/S1678-9946201658013. PMID: 27007556. [DOI:10.1590/S1678-9946201658013]
5. Islam S, Oh H, Jalal S, Karpati F, Ciofu O, Høiby N, et al. Chromosomal mechanisms of aminoglycoside resistance in Pseudomonas aeruginosa isolates from cystic fibrosis patients. Clin Microbiol Infect. 2009; 15:60-6. doi: 10.1111/j.1469-0691.2008.02097.x. [DOI:10.1111/j.1469-0691.2008.02097.x]
6. Sadovskay I, Vinogradov E, Li J, Hachani A, Kowalska K, Filloux A. H igh-level antibiotic resistance in Pseudomonas aeruginosa biofilm: then dvB gene is involved in the production of highly glycerol-phosphory lated b-(1 R3)-glucans, which bind aminoglycosides. Glycobiol. 2010; 20: 895-904, doi: 10.1093/glycob/cwq047. [DOI:10.1093/glycob/cwq047]
7. Ramirez MS, Tolmasky ME. Aminoglycoside modifying enzymes. Drug Resist Updates 2010;13(6):151-171. doi: 10.1016/j.drup.2010.08.003. [DOI:10.1016/j.drup.2010.08.003]
8. Poole K. Pseudomonas aeruginosa: resistance to the max. Front Microbiol. 2011; 2: 65. doi: 10.3389/fmicb.2011.00065. [DOI:10.3389/fmicb.2011.00065]
9. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; twenty first informational supplement. CLSI document M100-S21. CLSI 2011 Wayne, PA.
10. Chatterjee M, Anju CP, Biswas L, Anil Kumar V, Gopi Mohan C, Biswas R. Antibiotic resistance in Pseudomonas aeruginosa and alternative therapeutic options. Int J Med Microbiol. 2016; 306(1): 48-58. PMID: 26687205 DOI: 10.1016/j.ijmm.2015.11.004. [DOI:10.1016/j.ijmm.2015.11.004]
11. Tarashi S, Goudarzi H, Erfanimanesh S, Pormohammad A, HashemiA. Phenotypic and Molecular Detection of Metallo-Beta-Lactamase Genes Among Imipenem Resistant Pseudomonas aeruginosa and Acinetobacter baumannii Strains Isolated From Patients with Burn Injuries. Arch Clin Infect Dis. 2016; 11(4): e39036. doi: 10.5812/archcid.39036. [DOI:10.5812/archcid.39036]
12. Adabi M, Talebi Taher M, Arbabi L, Afshar M, Fathizadeh S, Minaeian S, et al. Determination of Antibiotic Resistance Pattern of Pseudomonas aeruginosa Strains Isolated from Patients with Burn Wounds . J Ardabil Univ Med Sci. 2015; 15 (1): 66-74.
13. Goudarzi H, Taherpour A, Fallah F, Pourkaveh B, Erfanimanesh S, Hashemi A. Laboratory Detection of Carbapenemases in Gram-Negative Bacteria. Arch Clin Infect Dis. 2016; 11(2):e32816. doi: 10.5812/archcid.32816. [DOI:10.5812/archcid.32816]
14. Michalska AD, Sacha PT, Ojdana D, Wieczorek A, Tryniszewska E. Prevalence of resistance to aminoglycosides and fluoroquinolones among Pseudomonas aeruginosa strains in a University Hospital in Northeastern Poland. Braz J Microbiol. 2014; 45(4): 1455-8. PMID: 25763054. [DOI:10.1590/S1517-83822014000400041]
15. Bhatt P, Rathi KR, Hazra S, Sharma A, Shete V. Prevalence of multidrug resistant Pseudomonas aeruginosa infection in burn patients at a tertiary care centre. India J Burns. 2015; 23(1): 56. . doi: 10.4103/0971- 653X.171656. [DOI:10.4103/0971-653X.171656]
16. Kashfi M, Hashemi A, Eslami G, Sadredin Amin M, Tarashi S, et al. The Prevalence of Aminoglycoside-Modifying Enzyme Genes Among Pseudomonas aeruginosa Strains Isolated From Burn Patients, Arch Clin Infect Dis. 2017; 12(1):e40896. doi: 10.5812/archcid.40896. [DOI:10.5812/archcid.40896]
17. Vaziri F, Peerayeh SN, Nejad QB, Farhadian A. The prevalence of aminoglycoside-modifying enzyme genes (aac (6')-I, aac (6')-II, ant (2")-I, aph (3')-VI) in Pseudomonas aeruginosa. Clinics (Sao Paulo). 2011; 66(9):1519-22. doi:org/10.1590/S1807-59322011000900002.
18. Dubois V, Arpin C, Dupart V, Scavelli A, Coulange L, Andre C, et al. Beta-lactam and aminoglycoside resistance rates and mechanisms among Pseudomonas aeruginosa in French general practice (community and private healthcare centres). J Antimicrob Chemother. 2008; 62(2):316-23. doi: 1 0.1093/jac/dkn174. [DOI:10.1093/jac/dkn174]
19. Asghar A, Ahmed O. Prevalence of aminoglycoside resistance genes in Pseudomonas aeruginosa isolated from a tertiary care hospital in Makkah, KSA. Clinical Practice (Therapy) 2018; 15(2): 1-7. [DOI:10.4172/clinical-practice.1000391]
20. Kim JY, Park YJ, Kwon HJ, Han K, Kang MW, Woo GJ. Occurrence and mechanisms of amikacin resistance and its association with beta-lactamases in Pseudomonas aeruginosa: a Korean nationwide study. J Antimicrob Chemother. 2008; 62(3):479-83. doi: 10.1093/jac/dkn244. [DOI:10.1093/jac/dkn244]
21. Eslami G, Hashemi A, Karimi Yazdi MM, Esmaeili Benvidi M, Khiabani Rad P, Moradi S ; Fallah F and et al. Antibacterial Effects of Zataria multiflora, Ziziphus, Chamomile and Myrtus communis Methanolic Extracts on IMP-Type Metallo-Beta-Lactamase-Producing Pseudomonas aeruginosa. Arch Clin Infect Dis. 2016; 11(1): e32413 , doi: 10.5812 [DOI:10.5812/archcid.32413]
22. Franco M, Caiaffa-Filho H, Burattini M, Rossi F. Metallo-beta-lactamases among imipenem-resistant P. aeruginosa in a Brazilian university hospital. Clinics (Sao Paulo) 2010; 65:825-829. PubMed: PMC2954731. [DOI:10.1590/S1807-59322010000900002]
23. Peng Y, Shi J, Bu T, Li Y, Ye X, Chen X, Yaoa Z. Alarming and increasing prevalence of multidrug resistant Pseudomonas aeruginosa among healthcare-associated infections in China. JGAR 2015; 3: 155-160. doi: 10.1016/j.jgar.2015.04.001. [DOI:10.1016/j.jgar.2015.04.001]
24. Teixeira B, Rodulfo H, Carreño N, Guzmán M, Salazar E, De Donato A. Aminoglycoside resistance genes in pseudomonas aeruginosa isolates from cumana, Venezuela. Rev Inst Med Trop Sao Paulo. 2016; 58: 13. doi: 10.1590/S1678-9946201658013. PMID: 27007556. [DOI:10.1590/S1678-9946201658013]
25. Islam S, Oh H, Jalal S, Karpati F, Ciofu O, Høiby N, et al. Chromosomal mechanisms of aminoglycoside resistance in Pseudomonas aeruginosa isolates from cystic fibrosis patients. Clin Microbiol Infect. 2009; 15:60-6. doi: 10.1111/j.1469-0691.2008.02097.x. [DOI:10.1111/j.1469-0691.2008.02097.x]
26. Sadovskay I, Vinogradov E, Li J, Hachani A, Kowalska K, Filloux A. H igh-level antibiotic resistance in Pseudomonas aeruginosa biofilm: then dvB gene is involved in the production of highly glycerol-phosphory lated b-(1 R3)-glucans, which bind aminoglycosides. Glycobiol. 2010; 20: 895-904, doi: 10.1093/glycob/cwq047. [DOI:10.1093/glycob/cwq047]
27. Ramirez MS, Tolmasky ME. Aminoglycoside modifying enzymes. Drug Resist Updates 2010;13(6):151-171. doi: 10.1016/j.drup.2010.08.003. [DOI:10.1016/j.drup.2010.08.003]
28. Poole K. Pseudomonas aeruginosa: resistance to the max. Front Microbiol. 2011; 2: 65. doi: 10.3389/fmicb.2011.00065. [DOI:10.3389/fmicb.2011.00065]
29. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; twenty first informational supplement. CLSI document M100-S21. CLSI 2011 Wayne, PA.
30. Chatterjee M, Anju CP, Biswas L, Anil Kumar V, Gopi Mohan C, Biswas R. Antibiotic resistance in Pseudomonas aeruginosa and alternative therapeutic options. Int J Med Microbiol. 2016; 306(1): 48-58. PMID: 26687205 DOI: 10.1016/j.ijmm.2015.11.004. [DOI:10.1016/j.ijmm.2015.11.004]
31. Tarashi S, Goudarzi H, Erfanimanesh S, Pormohammad A, HashemiA. Phenotypic and Molecular Detection of Metallo-Beta-Lactamase Genes Among Imipenem Resistant Pseudomonas aeruginosa and Acinetobacter baumannii Strains Isolated From Patients with Burn Injuries. Arch Clin Infect Dis. 2016; 11(4): e39036. doi: 10.5812/archcid.39036. [DOI:10.5812/archcid.39036]
32. Adabi M, Talebi Taher M, Arbabi L, Afshar M, Fathizadeh S, Minaeian S, et al. Determination of Antibiotic Resistance Pattern of Pseudomonas aeruginosa Strains Isolated from Patients with Burn Wounds . J Ardabil Univ Med Sci. 2015; 15 (1): 66-74.
33. Goudarzi H, Taherpour A, Fallah F, Pourkaveh B, Erfanimanesh S, Hashemi A. Laboratory Detection of Carbapenemases in Gram-Negative Bacteria. Arch Clin Infect Dis. 2016; 11(2):e32816. doi: 10.5812/archcid.32816. [DOI:10.5812/archcid.32816]
34. Michalska AD, Sacha PT, Ojdana D, Wieczorek A, Tryniszewska E. Prevalence of resistance to aminoglycosides and fluoroquinolones among Pseudomonas aeruginosa strains in a University Hospital in Northeastern Poland. Braz J Microbiol. 2014; 45(4): 1455-8. PMID: 25763054. [DOI:10.1590/S1517-83822014000400041]
35. Bhatt P, Rathi KR, Hazra S, Sharma A, Shete V. Prevalence of multidrug resistant Pseudomonas aeruginosa infection in burn patients at a tertiary care centre. India J Burns. 2015; 23(1): 56. . doi: 10.4103/0971- 653X.171656. [DOI:10.4103/0971-653X.171656]
36. Kashfi M, Hashemi A, Eslami G, Sadredin Amin M, Tarashi S, et al. The Prevalence of Aminoglycoside-Modifying Enzyme Genes Among Pseudomonas aeruginosa Strains Isolated From Burn Patients, Arch Clin Infect Dis. 2017; 12(1):e40896. doi: 10.5812/archcid.40896. [DOI:10.5812/archcid.40896]
37. Vaziri F, Peerayeh SN, Nejad QB, Farhadian A. The prevalence of aminoglycoside-modifying enzyme genes (aac (6')-I, aac (6')-II, ant (2")-I, aph (3')-VI) in Pseudomonas aeruginosa. Clinics (Sao Paulo). 2011; 66(9):1519-22. doi:org/10.1590/S1807-59322011000900002.
38. Dubois V, Arpin C, Dupart V, Scavelli A, Coulange L, Andre C, et al. Beta-lactam and aminoglycoside resistance rates and mechanisms among Pseudomonas aeruginosa in French general practice (community and private healthcare centres). J Antimicrob Chemother. 2008; 62(2):316-23. doi: 1 0.1093/jac/dkn174. [DOI:10.1093/jac/dkn174]
39. Asghar A, Ahmed O. Prevalence of aminoglycoside resistance genes in Pseudomonas aeruginosa isolated from a tertiary care hospital in Makkah, KSA. Clinical Practice (Therapy) 2018; 15(2): 1-7. [DOI:10.4172/clinical-practice.1000391]
40. Kim JY, Park YJ, Kwon HJ, Han K, Kang MW, Woo GJ. Occurrence and mechanisms of amikacin resistance and its association with beta-lactamases in Pseudomonas aeruginosa: a Korean nationwide study. J Antimicrob Chemother. 2008; 62(3):479-83. doi: 10.1093/jac/dkn244. [DOI:10.1093/jac/dkn244]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Archives of Hygiene Sciences

Designed & Developed by : Yektaweb