Volume 8, Issue 3 (Summer 2019)                   Arch Hyg Sci 2019, 8(3): 202-214 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rafiee M, Jahangiri-rad M. Risk Assessment of Heavy Metal Hotspots in Surface Water Bodies: A Case Study of Zanjan Province, Iran. Arch Hyg Sci 2019; 8 (3) :202-214
URL: http://jhygiene.muq.ac.ir/article-1-391-en.html
1- a Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences
2- c Water Purification Research Center, Tehran Medical Sciences, Islamic Azad University
Abstract:   (4413 Views)
Background & Aims of the Study: Agricultural and industrial activities are primary risk sources of heavy metal (HM) pollution in the water environment. Indices are well-known approaches for assessing HM contamination in the aquatic environment.
Materials and Methods: Water samples were collected in polyethylene bottles and transported to the laboratory for further analysis. Samples were examined during the winter and spring. The inductively coupled plasma was used to determine HMs concentrations collected from 48 stations. The Wilcox signed-rank test was applied to examine the HMs values in two different months. In addition, Spearman's correlation coefficient was used to examine the relationship between HMs.
Results: Based on the findings of the present study, the HM contents in the analyzed samples showed no high values, except for lead and nickel (15% of samples) in spring. The potential ecological risk indices revealed that about 25% and 41% of samples demonstrated high and significantly high pollution levels in spring, respectively, while these values declined to 37% and 8% in winter. Only one sampling point showed risk characterization ratio ≥ 1 for zinc in winter. Moreover, the ecological risk of the surface water potentially decreased in the order of water bodies > dry farming > agricultural lands > barren lands areas.
Conclusion: According to the obtained results, the presence of lead and nickel indicated the main anthropogenic sources of HMs in the studied area, especially in the west and south of Zanjan. Anthropogenic inputs of HMs could be related to mining, agricultural, and industrial activities
Full-Text [PDF 1303 kb]   (884 Downloads) |   |   Full-Text (HTML)  (715 Views)  
Type of Study: Original Article | Subject: Environmental Health
Received: 2019/07/2 | Accepted: 2019/12/18 | Published: 2020/01/15

References
1. Martín JR, Ramos-Miras JJ, Boluda R, Gil C. Spatial relations of heavy metals in arable and greenhouse soils of a Mediterranean environment region (Spain). Geoderma 2013;200:180-8. Link [DOI:10.1016/j.geoderma.2013.02.014]
2. Olumuyiwa OO, Dube S, Awofolu OR, Nindi MM. Assessing the enrichment of heavy metals in surface soil and plant (Digitariaeriantha) around coal-fired power plants in South Africa. Environ Sci Pollut Res Int 2014;21(6):4686-96. PMID: 24352550 [DOI:10.1007/s11356-013-2432-0]
3. Malandrino M, Abollino O, Buoso S, Giacomino A, Gioia CL, Mentasti E. Accumulation of heavy metals from contaminated soil to plants and evaluation of soil remediation by vermiculite. Chemosphere 2011;82(2):169-78. PMID: 21055788 [DOI:10.1016/j.chemosphere.2010.10.028]
4. Xu XH, Zhao YC, Zhao XY, Wang YD, Deng WJ. Sources of heavy metal pollution in agricultural soils of a rapidly industrializing area in the Yangtze Delta of China. Ecotoxicol Environ Saf 2014;108:161-7. PMID: 25063882 [DOI:10.1016/j.ecoenv.2014.07.001]
5. Naimo TJ. A review of the effects of heavy metals on freshwater mussels. Ecotoxicology 1995;4(6):341-62. PMID: 24197828 [DOI:10.1007/BF00118870]
6. Singh KP, Mohan D, Singh VK, Malik A. Studies on distribution and fractionation of heavy metals in Gomti river sediments-a tributary of the Ganges, India. J Hydrol 2005;312(1-4):14-27. Link [DOI:10.1016/j.jhydrol.2005.01.021]
7. Cheng S, Grosse W, Karrenbrock F, Thoennessen M. Efficiency of constructed wetlands in decontamination of water polluted by heavy metals. J Ecol Eng 2002;18:317-25. Link [DOI:10.1016/S0925-8574(01)00091-X]
8. Calisi A, Lionetto MG, Sanchez-Hernandez JC, Schettino T. Effect of heavy metal exposure on blood hemoglobin concentration and methemoglobin percentage in lumbricusterrestris. Ecotoxicol 2011;20(4):847-4. PMID: 21424722 [DOI:10.1007/s10646-011-0641-1]
9. Kim J, Lee H, Koo T. Heavy-metal concentrations in three owl species from Korea. Ecotoxicology 2008;17(1):21-8. PMID: 17955366 [DOI:10.1007/s10646-007-0172-y]
10. Hakanson L. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res 1980;14(8):975-1001. Link [DOI:10.1016/0043-1354(80)90143-8]
11. Porstner U. Lecture notes in earth sciences (contaminated sediments). Berlin: Springer; 1989. P. 107-9. Link
12. Kumpiene J, Brännvall E, Taraškevičius R, Aksamitauskas Č, Zinkutė R. Spatial variability of topsoil contamination with trace elements in preschools in Vilnius, Lithuania. J Geochem Explor 2011;108(1):15-20. Link [DOI:10.1016/j.gexplo.2010.08.003]
13. Sanders BM, Jenkins KD, Sunda WG, Costlow JD. Free cupric ion activity in seawater: Effects on metallothionein and growth in crab larvae. Science 1983;222(4619):53-5. PMID: 17810090 [DOI:10.1126/science.222.4619.53]
14. Vink JP. The origin of speciation: trace metal kinetics over natural water/sediment interfaces and the consequences for bioaccumulation. Environ Pollut 2009;157(2):519-27. PMID: 18995939 [DOI:10.1016/j.envpol.2008.09.037]
15. Zitko V, Carson WG. A mechanism of the effects of water hardness of the lethality of heavy metals to fish. Chemosphere 1976;5(5):299-303. Link [DOI:10.1016/0045-6535(76)90003-5]
16. Di Toro D, Allen HE, Bergman HL, Meyer JS, Paquin PR, Santore RC. Biotic ligand model of the acute toxicity of metals. Environ Toxicol Chem 2001;20(10):2383-96. PMID: 11596774 [DOI:10.1002/etc.5620201034]
17. Playle RC, Dixon DG, Burnison K. Copper and Cadmium binding to fish gills: estimates of metal-gill stability constants and modelling of metal accumulation. Can J Fish Aquat Sci 1993; [DOI:10.1139/f93-291]
18. 50(12):2678-87. Link
19. Peters A, Merrington G, de Schamphelaere
20. K, Delbeke K. Regulatory consideration of bioavailability for metals: Simplification of input parameters for the chronic copper biotic ligand model. Integr Environ Assess Manag 2011;7(3):437-44. PMID: 21082669 [DOI:10.1002/ieam.159]
21. Verschoor AJ, Vink JP, Vijver MG. Simplification of biotic ligand models of Cu, Ni, and Zn by 1‐, 2‐, and 3‐parameter transfer functions. Integr Environ Assess Manag 2012;8(4):738-48. Link [DOI:10.1002/ieam.1298]
22. Zhao QN, Xu QX, Yang K. Application of potential ecological risk index in soil pollution of typical polluting industries. J Eastchina Normal Univ Natural Sci 2005;1:110-5. Link
23. National research council of Canada. SLRS-6: river water certified reference material for trace metals and other constituents. Canada: National research council of Canada; 2017. Link
24. Bailey TC. Spatial statistical methods in health. Cad Saude Publica 2001;17(5):1083-98. PMID: 11679885 [DOI:10.1590/S0102-311X2001000500011]
25. Lai D. Geostatistical analysis of Chinese cancer mortality: Variogram, Kriging and Beyond. J Data Sci 2004;2(2):177-93. Link
26. Johnston K, Ver Hoef JM, Krivoruchko K, Lucas N. Using ArcGIS geostatistical analyst. Redlands: Esri Press; 2001. Link
27. ESRI. ESRI shapefile technical description: New York: ESRI White Paper; 1998. Link
28. Mohammadian M, Nouri J, Afshari N, Nassiri
29. J, Nourani M. Investigation of heavy metals concentrations in the water wells close to Zanjan Zinc and Lead Smelting Plant. Int J Environ Health Eng 2008;1:35-46. Link
30. Sobhanardakani S, Mohammadi Roozbahani M, Karimi H, Sorooshnia R. Heavy metals (Mg, Mn, Ni and Sn) contamination in Soil Samples of Ahvaz II industrial estate of Iran in 2013. Arch Hyg Sci 2016;5(2):123-8. Link
31. Sohrabi M, Beigmohammadi Z, Cheraghi M, Majidifar S, Jahangard A. Health risks of heavy metals for population via consumption of greenhouse vegetables in Hamadan, Iran. Arch Hyg Sci 2015;4(4):165-71. Link
32. Parizanganeh A, Hajisoltania P, Zaman A. Assessment of heavy metal pollution in surficial soils surrounding zinc Industrial Complex in Zanjan-Iran. Proc Environ Sci 2010;2:162-6. Link [DOI:10.1016/j.proenv.2010.10.019]
33. Yousefi N, Jahangard A. Monitoring of heavy metal concentration in groundwater of Qorveh county, Kurdistan province, Iran. Arch Hyg Sci 2016;
34. 5(3):166-71. Link
35. Li F, Fan Z, Xiao P, Oh K, Ma X, Hou W. Contamination, chemical speciation and vertical distribution of heavy metals in soils of an old and large industrial zone in Northeast China. Environ Geol 2009;57(8):1815-23. Link [DOI:10.1007/s00254-008-1469-8]
36. Farahmandkia Z, Mehrasbi MR, Sekhavatjou M, Hasan AM, Ramezanzadeh Z. Study of heavy metals in the atmospheric deposition in Zanjan, Iran. Iran J Health Environ 2010;4(6):240-9. Link
37. Rafiee M, Eslami A, Saeedi R, Abtahi M, Jahangirirad M. Multivariate and geostatistical analysis of spatial distribution and potential sources of heavy metals in surface waters. Caspian J Environ Sci 2019;17(1):23-41. Link

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Archives of Hygiene Sciences

Designed & Developed by : Yektaweb