Volume 8, Issue 1 (Winter 2019)                   Arch Hyg Sci 2019, 8(1): 56-65 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghasemi Kochameshki M, Mahmoudian M, Marjani A. Mixed-Matrix Membranes Containing Metal Organic Frameworks (MOFs) for Separation of Dyes and Heavy Metals from Water. Arch Hyg Sci 2019; 8 (1) :56-65
URL: http://jhygiene.muq.ac.ir/article-1-322-en.html
1- Department of Chemistry, Islamic Azad University, Arak Branch, Arak, Iran
Abstract:   (3158 Views)
Background & Aims of the Study: In this study, Metal Organic Frameworks (MOFs) were synthesized as an additive for the preparation of mixed-matrix membranes. MOFs were investigated by FTIR, XRD and FE-SEM techniques.
Materials & Methods: Synthesized MOFs were prepared via the hydrothermal method. The effect of MOFs on the morphology and property of the polyethersulfone (PES) membranes was examined using scanning electron microscopy (FE-SEM). The membranes were characterized by rejection of salt solutions, removal of heavy metals and dyes rejection.
Results: Results show that membrane containing 5 wt% of MOFs provides better hydrophilicity, flux, antifouling and rejection properties and change on the aforementioned characteristic properties was studied for this membrane. The results suggested that the water flux of membrane increased to 190 L.m-2 h-1 which related to 7 wt% membrane as well as the highest rejection for different heavy metals and dyes were related to 5 wt% MOFs in mixed matrix membranes.
Conclusion: Based on the results, hydrophilicity, water flux, and antifouling properties were improved by hybrid membranes.
Full-Text [PDF 907 kb]   (924 Downloads) |   |   Full-Text (HTML)  (1436 Views)  
Type of Study: Original Article | Subject: General
Received: 2018/07/9 | Published: 2019/02/15

References
1. 1. Schwarzenbach RP, Escher BI, Fenner K, Hofstetter TB, Johnson CA, von Gunten U, et al. The challenge of micropollutants in aquatic systems. New York: Science; 2006. p. 313,1072-1077. Link [DOI:10.1126/science.1127291]
2. Marjani A, Shirazi Y, Shirazian S. Investigation on the best conditions for purification of multiwall carbon nanotubes, Asian J Chem 2011;23(7):3205-7. Link
3. Mahmoudi E, Ng LY, Ba-Abbad MM, Mohammad AW. Novel nanohybrid polysulfone membrane embedded with silver nanoparticles on graphene oxide nanoplates, Chem Eng J 2015;277:1-10. Link [DOI:10.1016/j.cej.2015.04.107]
4. Marjani A, Shirazian S, CFD simulation of dense gas extraction through polymeric membranes. World Academy Sci Eng Technol 2010;4(1):127-31. Link
5. Marjani A, Shirazian S. Simulation of heavy metal extraction in membrane contactors using computational fluid dynamics. Desalination 2011;281:422-428. Link [DOI:10.1016/j.desal.2011.08.032]
6. Marjani A, Shirazian S. Hydrodynamic investigations on heavy metal extraction in membrane extractors. Oriental J Chem 2011;27(4):1311-6. Link
7. Marjani A, Shirazian S. Investigation on numerical simulation of acetone and ethanol separation from water by using membrane. Asian J Chem 2011;23(7):3293-4. Link
8. Marjani A, Shirazian S. Computational fluid dynamics simulation of ammonia removal from wastewaters by membrane. Asian J Chem 2011;23(7):3299-300. Link
9. Marjani A, Shirazian S. Investigation on copper extraction using numerical simulation. Asian J Chem 2011;23(7):3289-3290. Link
10. Moghadassi A, Marjani A, Shirazian S, Moradi S. Gas separation properties of hollow-fiber membranes of polypropylene and polycarbonate by melt-spinning method. Asian J Chem 2011;23(5):1922-1924. Link
11. Sohrabi MR, Marjani A, Moradi S, Davallo M, Shirazian S. Theoretical studies on membrane-based gas separation using Computational Fluid Dynamics (CFD) of mass transfer. J Chem Soc Pakistan 2011;33(4):464-73. Link
12. Sohrabi MR, Marjani A, Moradi S, Davallo M, Shirazian S. Preparation and simulation of polycarbonate hollow-fiber membrane for gas separation. Asian J Chem 2011;23(1):302-304. Link
13. Sohrabi MR, Marjani A, Shirazian S, Moradi S. Simulation of ethanol and acetone extraction from aqueous solutions in membrane contactors. Asian J Chem 2011;23(9):4229-30. Link
14. A Marjani, Mohammadi P, Shirazian S. Preparation and characterization of poly (vinyl alcohol) membrane for pervaporation separation of water-organic mixtures. Orient J Chem 2012;28(1):97-102. Link [DOI:10.13005/ojc/280114]
15. Marjani A, Shirazian S. Theoretical studies on copper extraction by means of polymeric membrane contactors. Orient J Chem 2012;28(1):23-28. Link [DOI:10.13005/ojc/280104]
16. Marjani A, Shirazian S. Mathematical modeling and cfd simulation of hydrocarbon purification using membrane technology. Orient J Chem 2012;28(1):123-129. Link [DOI:10.13005/ojc/280118]
17. Marjani A, Shirazian S. Modeling of organic mixtures separation in dense membranes using finite element method (FEM). Orient J Chem 2012;28(1):41-46. Link [DOI:10.13005/ojc/280106]
18. Marjani A, Shirazian S. CFD simulation of mass transfer in membrane evaporators for concentration of aqueous solutions. Orient J Chem 2012;28(1):83-87. Link [DOI:10.13005/ojc/280112]
19. Marjani A, Shirazian S. Application of CFD Techniques for Prediction of NH3 transport through porous membranes. Orient J Chem 2012;28(1):67-72. Link [DOI:10.13005/ojc/280110]
20. Marjani A, Shirazian S, Ranjbar M, Ahmadi M. Mathematical modeling of gas separation in flat-sheet membrane contactors. Orient J Chem 2012;28(1):13-18. Link [DOI:10.13005/ojc/280102]
21. Pishnamazi M, Marjani A, Shirazian S, Samipurgiri M. Mathematical modeling and numerical simulation of wastewater treatment unit using CFD. Orient J Chem 2012;28(1):51-58. Link [DOI:10.13005/ojc/280108]
22. Shirazian S, Marjani A, Rezakazemi M. Separation of CO2 by single and mixed aqueous amine solvents in membrane contactors: Fluid flow and mass transfer modeling. Eng Comput 2012;28(2):189-198. Link [DOI:10.1007/s00366-011-0237-7]
23. Shirazian S, Pishnamazi M, Rezakazemi M, Nouri A, Jafari M, Noroozi S, et al. Implementation of the Finite Element Method for Simulation of Mass Transfer in Membrane Contactors. Chem Eng Technol 2012;35(6):1077-1084. Link [DOI:10.1002/ceat.201100397]
24. Shirazian S, Rezakazemi M, Marjani A, Moradi S. Hydrodynamics and mass transfer simulation of wastewater treatment in membrane reactors. Desalination 2012;286:290-295. Link [DOI:10.1016/j.desal.2011.11.039]
25. Meng N, Wang Z, Low Z-X, Zhang Y, Wang H, Zhang X. Impact of trace graphene oxide in coagulation bath on morphology and performance of polysulfone ultrafiltration membrane. Sep Purif Technol 2015;147:364-371. Link [DOI:10.1016/j.seppur.2015.02.043]
26. Khan A, Sherazi TA, Khan Y, Li S.A.R. Naqvi, Z. Cui. Fabrication and characterization of polysulfone/modified nanocarbon black composite antifouling ultrafiltration membranes. J Membrane Sci 2018;554:71-82. Link [DOI:10.1016/j.memsci.2018.02.063]
27. Liu Z, Mi Z, Chen C, Zhou H, Zhao X, Wang D. Preparation of hydrophilic and antifouling polysulfone ultrafiltration membrane derived from phenolphthalin by copolymerization method. Appl Surf Sci 2017;401:69-78. Link [DOI:10.1016/j.apsusc.2016.12.228]
28. Janiak C, Vieth JK. MOFs, MILs and more: concepts, properties and applications for porous coordination networks (PCNs). New J Chem 2011;11:2366-2388. Link [DOI:10.1039/c0nj00275e]
29. Vakili R, Xu S, Al-Janabi N, Gorgojo P, Holmes SM, Fan X. Microwave-assisted synthesis of zirconium-based metal organic frameworks (MOFs): Optimization and gas adsorption. Microporous Mesoporous Mater 2018;260:45-53. Link [DOI:10.1016/j.micromeso.2017.10.028]
30. Kang Y-S, Lu Y, Chen K, Zhao Y, Wang P, Sun W-Y. Metal-organic frameworks with catalytic centers: From synthesis to catalytic application. Coordination Chem Rev 2019;378:262-280. Link [DOI:10.1016/j.ccr.2018.02.009]
31. Gharib M, Safarifard V, Morsali A. Ultrasound assisted synthesis of amide functionalized metal-organic framework for nitroaromatic sensing. Ultrason Sonochem 2018;42:112-118. Link [DOI:10.1016/j.ultsonch.2017.11.009]
32. Duan C, Li F, Luo S, Xiao J, Li L, Xi H. Facile synthesis of hierarchical porous metal-organic frameworks with enhanced catalytic activity. Chem Eng J 2018;334:1477-1483. Link [DOI:10.1016/j.cej.2017.11.086]
33. Gholami F, Zinadini S, Zinatizadeh AA, Abbasi AR. TMU-5 metal-organic frameworks (MOFs) as a novel nanofiller for flux increment and fouling mitigation in PES ultrafiltration membrane. Sep Purif Technol 2018;194:272-280. Link [DOI:10.1016/j.seppur.2017.11.054]
34. Abney CW, Gilhula JC, Lu K, Lin W. Metal-Organic Framework Templated Inorganic Sorbents for Rapid and Efficient Extraction of Heavy Metals. Adv Mater 2014;26 (47):7993-7997. Link [DOI:10.1002/adma.201403428]
35. Rudd ND, Wang H, Fuentes-Fernandez EMA, Teat SJ, Chen F, Hall G, Chabal YJ, Li J. Highly Efficient Luminescent Metal-Organic Framework for the Simultaneous Detection and Removal of Heavy Metals from Water. ACS Appl Mater Interfaces 2016;8 (44):30294-30303. Link [DOI:10.1021/acsami.6b10890]
36. Mansourpanah Y, Amiri Z. Preparation of modified polyethersulfone nanoporous membranes in the presence of sodium tripolyphosphate for color separation; characterization and antifouling properties. Desalination 2014;335(1):33-40. Link [DOI:10.1016/j.desal.2013.12.008]
37. Wang Y, He G, Shao Y, Zhang D, Ruan X, Xiao W, et al. Enhanced performance of superhydrophobic polypropylene membrane with modified antifouling surface for high salinity water treatment. Sep Purif Technol 2018;214:11-20. Link [DOI:10.1016/j.seppur.2018.02.011]
38. Lai GS, Yusob MHM, Lau WJ, Gohari RJ, Emadzadeh D, Ismail AF. Novel mixed matrix membranes incorporated with dual-nanofillers for enhanced oil-water separation. Sep Purif Technol 2017;178:113-121. Link [DOI:10.1016/j.seppur.2017.01.033]
39. Vatanpour V, Madaeni SS, Rajabi L, Zinadini S, Derakhshan AA. Boehmite nanoparticles as a new nanofiller for preparation of antifouling mixed matrix membranes. J Membr Sci 2012;401-402:132-143. Link [DOI:10.1016/j.memsci.2012.01.040]
40. Zhang S-Y, Li D, Guo D, Zhang H, Shi W, Cheng P, et al. Synthesis of a chiral crystal form of MOF-5, CMOF-5, by chiral induction. J Am Chem Soc 2015;137(49)15406-15409. Link [DOI:10.1021/jacs.5b11150]
41. Tranchemontagne DJ, Hunt JR, Yaghi OM. Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0. Tetrahedron 2008;64(36):8553-8557. Link [DOI:10.1016/j.tet.2008.06.036]
42. Zhu L, Jia X, Bian H, Huo T, Duan Z, Xiang Y, Xia D. Structure and adsorptive desulfurization performance of the composite material MOF-5@ AC, New J Chem 2018;42:3840-3850. Link [DOI:10.1039/C7NJ04192F]
43. Dechnik J, Nuhnen A, Janiak C. Mixed-Matrix Membranes of the Air-Stable MOF-5 Analogue Co4 (μ4-O)(Me2pzba) 3. with a Mixed-Functional Pyrazolate-Carboxylate Linker for CO2/CH4 Separation. Cryst Growth Des 2017;17(8):4090-4099. Link [DOI:10.1021/acs.cgd.7b00202]
44. Rao Z, Feng K, Tang B, Wu P. Surface Decoration of Amino-Functionalized Metal-Organic Framework/Graphene Oxide Composite onto Polydopamine-Coated Membrane Substrate for Highly Efficient Heavy Metal Removal. ACS Appl Mater Interfaces 2017;9(3):2594-2605. Link [DOI:10.1021/acsami.6b15873]
45. Sani N, Lau W, Ismail A. Polyphenylsulfone-based solvent resistant nanofiltration (SRNF) membrane incorporated with copper-1, 3, 5-benzenetricarboxylate (Cu-BTC) nanoparticles for methanol separation. RSC Adv 2015;17:13000-13010. Link [DOI:10.1039/C4RA14284E]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Archives of Hygiene Sciences

Designed & Developed by : Yektaweb