Volume 7, Issue 3 (Summer 2018)                   Arch Hyg Sci 2018, 7(3): 139-149 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Moradi R, Hosseini J. Removal of Acid Orange25 Diazo Dye in Water Solutions by Adsorption onto Clinoptilolite Zeolite: Study Kinetic and Isotherm Model: Experimental Design and Optimization. Arch Hyg Sci 2018; 7 (3) :139-149
URL: http://jhygiene.muq.ac.ir/article-1-318-en.html
1- Department of Chemistry, Tuyserkan Branch, Islamic Azad University, Tuyserkan, Iran
Abstract:   (4224 Views)
 
Background & Aims of the Study: Dyes are one of the most hazardous materials in various industries which can problems in health human, environment and ecosystem. The purpose of this study is the removal of Acid Orange 25 (AO25) diazo dye in aqueous solutions by adsorption onto clinoptilolite (CP) zeolite: study kinetic and isotherm model: experimental design and optimization.
Materials & Methods: CP zeolite have been characterized by scanning electron microscopy (SEM), Energy dispersive X-ray (EDX) and Fourier transform infrared (FT-IR). The effective factors for the removal of dye were determined and optimized using Taguchi (L9 (34)) orthogonal array experimental design method with four factors having three levels for each factor. The most influenced of each factor on the process determined using Analysis of Variance (ANOVA) method. The isotherms of dye adsorption such as: Langmuir and Freundlich were studied.
Results: The Taguchi results showed that pH=4 (level 1), dye concentration=30 ppm (level 2), agitation speed=160 rpm (level 3) and adsorbent dosage=55 mg/l (level 2) was optimum conditions for this process. The interaction between pH×adsorbent dosage was the most influencing interaction. The percent of each process parameter on the removal of dye was found to be in the following the order: pH (7.217%), dye concentration (2.604%), agitation speed (86.539%) and adsorbent dosage (3.618%). The results showed that the dye adsorption onto CP followed Langmuir isotherm. Adsorption kinetics of dye onto CP followed the pseudo-second-order kinetic model.
Conclusions: The results showed that the adsorption process can be suitable method to removal dyes in aqueous solutions.

 
Full-Text [PDF 662 kb]   (844 Downloads) |   |   Full-Text (HTML)  (872 Views)  
Type of Study: Original Article | Subject: Environmental Health
Received: 2018/02/23 | Accepted: 2018/07/2 | Published: 2018/09/12

References
1. Hassan ME, Chen Y, Liu G, Zhu D, Cai J. Heterogeneous photo-Fenton degradation of Methyl Orange by Fe2O3/TiO2 nanoparticles under visible light. J Water Proc Eng 2016; 12(1): 52-57. [DOI:10.1016/j.jwpe.2016.05.014]
2. Gad-Allah TA, Kato Sh, Satokawa Sh, Kojima T. Treatment of synthetic dyes wastewater utilizing a magnetically separable photocatalyst (TiO2/SiO2/Fe3O4): Parametric and kinetic studies. Desalination 2009; 244 (1-3): 1-11. [DOI:10.1016/j.desal.2008.04.031]
3. Wang CC, Lee CK, Lyu MD, Juang LC. Photocatalytic degradation of C.I. Basic Violet 10 using TiO2 catalysts supported by Y zeolite: An investigation of the effects of operational parameters. Dyes Pigments 2008; 76(3): 817-824. [DOI:10.1016/j.dyepig.2007.02.004]
4. Yari AR, Alizadeh M, Hashemi S, Biglari H. Efficiency of electrocoagulation for removal of Reactive Yellow 14 from aqueous environments. Arch Hyg Sci 2013; 2(1):7-15.
5. Zollinger H. Color Chemistry Synthesis, Properties, and Applications of Organic Dyes and Pigments. third revised Edition, Wiley-VCH, ISBN 3-906390-23-3, p. 298, 2003.
6. Ruthven DM. Principles of Adsorption and Adsorption Processes, Chapter 1, Wiley- Interscience, New York, 1984.
7. Mantell CL. McGraw- Hill, New York, 1945.
8. Pathania D, Sharma Sh, Singh P. Removal of Methylene Blue by adsorption onto activated carbon developed from Ficus carica bast. Arabian J Chem 2017; 10(1): 1445-1451. [DOI:10.1016/j.arabjc.2013.04.021]
9. Gao H, Zhao S, Cheng X, Wang X, Zheng L. Removal of anionic azo dyes from aqueous solution using magnetic
10. polymer multi-wall carbon nanotube nanocomposite as adsorbent. Chem Eng J 2013; 223(1): 84-90. [DOI:10.1016/j.cej.2013.03.004]
11. Wang LG, Yan GB. Adsorptive removal of Direct Yellow 161 dye from aqueous solution using bamboo charcoals activated with different chemicals. Desalination 2011; 274(1-3): 81-90. [DOI:10.1016/j.desal.2011.01.082]
12. Dogan M, Alkan M. Adsorption kinetics of Methyl Violet onto perlite. Chemosphere 2003; 50(4): 517-528. [DOI:10.1016/S0045-6535(02)00629-X]
13. Armagan B, Turan M, Celik MS. Equilibrium studies on the adsorption of reactive azo dyes into zeolite. Desalination 2004;170(1): 33-39. [DOI:10.1016/j.desal.2004.02.091]
14. Huang M, Xu C, Wu Z, Huang Y, Lin J, Wu J. Photocatalytic discolorization of Methyl Orange solution by Pt modified TiO2 loaded on natural zeolite. Dyes Pigments 2008; 77 (2): 327-334. [DOI:10.1016/j.dyepig.2007.01.026]
15. Elizalde-Gonzalez MP, Hernandez-Montoya V. Removal of Acid Orange 7 by guava seed carbon: A four parameter optimization study. J Hazard Mater 2009; 168(1): 515-522. [DOI:10.1016/j.jhazmat.2009.02.064]
16. Balavi H, Samadanian-Isfahani S, Mehrabani-Zeinabad M, Edrissi M. Preparation and optimization of CeO2 nanoparticles and its application in photocatalytic degradation of Reactive Orange 16 dye. Powder Technol 2013;249 (1): 549-555. [DOI:10.1016/j.powtec.2013.09.021]
17. Devadi MAH, Krishna M, NarasimhaMurthy HN, Sathyanarayana BS. Statistical optimization for photocatalytic degradation of Methylene Blue by Ag-TiO2 nanoparticles. Procedia Mater Sci 2014; 5(1): 612-621. [DOI:10.1016/j.mspro.2014.07.307]
18. Ross PJ. Taghuchi techniques for quality engineering, McGraw-Hill, New York, 1998.
19. Atil H, Unver Y. A different approach of experimental design: Taguchi method. Pakistan J Biol Sci 2000; 3(9): 1538 -1540. [DOI:10.3923/pjbs.2000.1538.1540]
20. Nikazar M, Gholivand K, Mahanpoor K. Enhancement of photocatalytic efficiency of TiO2 by supporting on clinoptilolite in the decolorization of azo dye Direct Yellow 12 aqueous solutions. J Chinese Chem Soc 2007; 54(5): 1261-1268. [DOI:10.1002/jccs.200700178]
21. Li F, Jiang Y, Yu L, Yang Z, Hou T, Sun S. Surface effect of natural zeolite (clinoptilolite) on the photocatalytic activity of TiO2. Appl Surf Sci 2005; 252(5): 1410-1416. [DOI:10.1016/j.apsusc.2005.02.111]
22. Huang M, Xu C, Wu Z, Huang Y, Lin J, Wu J. Photocatalytic discolorization of Methyl Orange solution by Pt modified TiO2 loaded on natural zeolite. Dyes Pigments 2008;77(2): 327-334. [DOI:10.1016/j.dyepig.2007.01.026]
23. Lagergren S. Zur theorie der sogenannten adsorption geloster stoffe. K. Sven. Vetenskapsakad. Handling 1898; 24(4): 1-39.
24. Ho YS, Mckay GM. Pseudo-second order model for sorption processes. Process Biochem 1999; 34(5): 451-465. [DOI:10.1016/S0032-9592(98)00112-5]
25. Langmuir I. The constitution and fundamental properties of solids and liquids. part I. solids. J Am Chem Soc 1916; 38(11): 2221-2295. [DOI:10.1021/ja02268a002]
26. Freundlich HMF. Uber die adsorption in lasugen. Z Phys Chem 1906; 57: 385-470. [DOI:10.1515/zpch-1907-5723]
27. Balarak D, Mahdavi Y, Joghataei A. The Application of low-cost adsorbent for Reactive Blue 19 dye removal from aqueous solution: lemna minor. Arch Hyg Sci 2015; 4(4): 199-207.
28. Asadi F, Dargahi A, Almasi A, Moghofe E. Red Reactive 2 dye removal from aqueous solutions by pumice as a low-cost and available adsorbent. Arch Hyg Sci 2016; 5(3): 145-152.
29. Shaghayeghi Toosi F, Hosseiny M, Joghataei A, Shaghayeghi Toosi F. The application of SiO2 nanoparticles for anionic dye removal from aqueous solution. Arch Hyg Sci 2017; 6(2): 136-144. [DOI:10.29252/ArchHygSci.6.2.136]
30. Chiou MS, Li HY. Adsorption behavior of Reactive dye in aqueous solution on chemical cross-linked chitosan beads. Chemosphere 2003; 50(8): 1095-1105. [DOI:10.1016/S0045-6535(02)00636-7]
31. Gong R, Du Y, Li C, Zhu S, Qiu Y, Jiang J. Thioglycolic acid esterified into rice straw for removing lead from aqueous solution. Iran J Environ Health Sci Eng 2011; 8(3): 219-226.
32. Chao-Yin K, Chung-Hsin W, Jane-Yii W. Adsorption of Direct dyes from aqueous solutions by carbon nanotubes: determination of equilibrium, kinetics and thermodynamics parameters. J Colloid Interface Sci 2008; 327(2): 308-315. [DOI:10.1016/j.jcis.2008.08.038]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Archives of Hygiene Sciences

Designed & Developed by : Yektaweb