1. References
2. Venkataraman K. The chemistry of synthetic dyes. New York, Academic press, vol. 3, p. 169, 1970.
3. Zollinger H. Color Chemistry Synthesis, Properties, and Applications of Organic Dyes and Pigments. third revised Edition, Wiley-VCH, ISBN 3-906390-23-3, p. 298, 2003.
4. Bayramoglu G, Arica MY. Enzymatic removal of phenol and p-chlorophenol in enzyme reactor: horseradish
5. peroxidase immobilized on magnetic beads. J Hazard Mater 2008; 156(1-3):148-155. [
DOI:10.1016/j.jhazmat.2007.12.008]
6. Tepe O, Dursun AY. Combined effects of external mass transfer and biodegradation rates on removal of phenol by immobilized ralstonia eutropha in a packed bed reactor. J Hazard Mater 2008; 151(1): 9-16. [
DOI:10.1016/j.jhazmat.2007.05.049]
7. Kaviani D, Asadi M, Khodabakshi MJ, Rezaei Z. Removal of Malachite Green dye from aqueous solution using MnFe2O4/Al2O3 nanophotocatalyst by UV/H2O2 process. Arch Hyg Sci 2016; 5(2): 75-84.
8. Shokri A. Application of Sonocatalyst and Sonophotocatalyst for Degradation of Acid Red 14 in Aqueous Environment. Arch Hyg Sci 2016; 5(4): 229-235.
9. Nazari Sh, Yari AR, Mahmodian MH, Tanhaye Reshvanloo M, Alizadeh Matboo S, Majidi Gh, Emamian M. Application of H2O2 and H2O2/Fe0 in removal of Acid Red 18 dye from aqueous solutions. Arch Hyg Sci 2013; 2(3):114-120.
10. Yari AR, Alizadeh M, Hashemi S, Biglari H. Efficiency of electrocoagulation for removal of Reactive Yellow 14 from aqueous environments. Arch Hyg Sci 2013; 2(1):7-15.
11. Bach A, Semiat R. The role of activated carbon as a catalyst in GAC/iron oxide/H2O2 oxidation process. Desalination 2011; 273(1): 57-63. [
DOI:10.1016/j.desal.2010.04.020]
12. Yeddou AR, Nadjemi B, Halet F, Ould-Dris A, Capart R. Removal of cyanide in aqueous solution by oxidation with hydrogen peroxide in presence of activated carbon prepared from olive stones. Minerals Eng 2010; 23(1): 32-39. [
DOI:10.1016/j.mineng.2009.09.009]
13. Santos VP, Pereira MFR, Faria PCC, Orfao JJM. Decolourisation of dye solutions by oxidation with H2O2 in the presence of modified activated carbons. J Hazard Mater 2009; 162(2-3):736-742. [
DOI:10.1016/j.jhazmat.2008.05.090]
14. Ren XM, Chen CL, Nagatsu M, Wang XK. Carbon nanotubes as adsorbents in environmental pollution management: A review. Chem Eng J 2011; 170(2-3): 395- 410. [
DOI:10.1016/j.cej.2010.08.045]
15. Torkaman M, Moradi R, Keyvani B. Photocatalytic degradation azo dye Direct Red 23 using carbon nanotubes particles by UV/H2O2 Process in batch photoreactor. Rev Roum Chim 2016; 61(10): 763-772.
16. Miller JN, Miller JC. Statistics and Chemometrics for Analytical Chemistry. Fifth Edition, ISBN 0-13-129192-0, 1944.
17. Hejun G, Siyuan Z, Xiyuan C, Xiaodong W, Liqiang Z. Removal of anionic azo dyes from aqueous solution using magnetic polymer multi-wall carbon nanotube nanocomposite as adsorbent. Chem Eng J 2013; 223(1): 84-90. [
DOI:10.1016/j.cej.2013.03.004]
18. Muruganandham M, Swaminathan M. Photochemical oxidation of reactive azo dye with UV-H2O2 process. Dyes Pigments 2004; 62(3): 269-275. [
DOI:10.1016/j.dyepig.2003.12.006]
19. Amin MM, Golbini Mofrad MM, Pourzamani H, Sebaradar SM, Ebrahim K. Treatment of industrial wastewater contaminated with recalcitrant metal working fluids by the photo-Fenton process as post-treatment for DAF. J Indus Eng Chem 2017; 45(1): 412-420. [
DOI:10.1016/j.jiec.2016.10.010]
20. Saghi M, Mahanpoor K. Photocatalytic degradation of tetracycline aqueous solutions by nanospherical a-Fe2O3 supported on 12-tungstosilicic acid as catalyst: using full factorial experimental design. Int J Ind Chem 2017; 8(3): 297-313. [
DOI:10.1007/s40090-016-0108-6]
21. Alizadeh Kordkandi S, Forouzesh M. Application of full factorial design for methylene blue dye removal using heat-activated persulfate oxidation. J Taiwan Inst Chem Eng 2014; 45(5): 2597-2605. [
DOI:10.1016/j.jtice.2014.06.015]
22. Barka N, Abdennouri M, Boussaoud A, Galadi A, Baalala M, Bensitel M, Sahibed-Dine A, Nohair K, Sadiq M. Arabian J Chem 2014; 7(5): 752-757. [
DOI:10.1016/j.arabjc.2010.12.015]
23. Seyyedi K, Farbodnia Jahromi MA. Decolorization of azo dye C.I. Direct Black 38 by Photocatalytic method using TiO2 and optimizing of process. APCBEE Procedia 2014; 10: 115-119. [
DOI:10.1016/j.apcbee.2014.10.027]
24. So CM, Cheng MY, Yu JC, Wong PK. Degradation of azo dye Procion Red MX-5B by photocatalytic oxidation.
25. Chemosphere 2002; 46(6): 905-912. [
DOI:10.1016/S0045-6535(01)00153-9]
26. Lee JM, Kim MS, Hwang B, Bae W, Kim BW. Photodegradation of acid red 114 dissolved using a photo-Fenton process with TiO2. Dyes Pigments 2003; 56(1): 59-67. [
DOI:10.1016/S0143-7208(02)00112-2]
27. Sato S. Effects of surface modification with silicon oxides on the photochemical properties of powdered titania.
28. Langmuir 1988; 4(5): 1156-1159. [
DOI:10.1021/la00083a017]
29. Yoneyama H, Haga Sh, Yamanaka Sh. Photocatalytic activities of microcrystalline titania incorporated in sheet silicates of clay. J Phys Chem 1989; 93(12): 4833-4837. [
DOI:10.1021/j100349a031]
30. Nikazar M, Gholivand Kh, Mahanpoor K. Photocatalytic degradation of azo dye Acid Red 114 in water with TiO2 supported on clinoptilolite as a catalyst. Desalination 2008; 219(1-3): 293-300. [
DOI:10.1016/j.desal.2007.02.035]