Volume 7, Issue 4 (Autumn 2018)                   Arch Hyg Sci 2018, 7(4): 264-272 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Asadi-Ghalhari E, Asadi-Ghalhari M, Zargar M. Tetracycline Antibiotic Removal from Wastewater via Air-Cathode Microbial Fuel Cells. Arch Hyg Sci 2018; 7 (4) :264-272
URL: http://jhygiene.muq.ac.ir/article-1-288-en.html
1- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
2- Research Center for Environmental Pollutants and Department of Environmental Health Engineering, Qom University of Medical Sciences, Qom, Iran.
Abstract:   (4384 Views)
Background and objective: Tetracyclines are the second most used group of antibiotics in the world. This type of antibiotic has a weak attraction in the body and enters wastewater through urine and feces. This study investigated the effectiveness of tetracycline removal from wastewater by air-cathode microbial fuel cells.
Materials and methods: The current study was bench-scale experimental research as a batch mode. The anode was made of  flat graphite and the air cathode was a carbon cloth with four PTFE diffusion layers with platinum cover (0.3 mg/cm2). Two similar reactors were used. The influent wastewater (500 mg/L) was injected into two reactors (one with tetracycline and the other without tetracycline). Both reactors were used in a batch mode with 1000 Ohm external impedance in 25±2 Cº via artificial wastewater.    
Results: The results of the study showed that the voltage production time in the tetracycline reactor was considerably longer than the tetracycline-free reactor. The amount of COD reduction was almost similar in both reactors. Although the effectiveness of COD reduction was similar in both reactors, because the operation time for the tetracycline reactor was longer, the rate of COD removal was considerably higher in the tetracycline-free reactor.     
Conclusion: The air-cathode microbial fuel cell reactor could remove about 50% of tetracycline antibiotic from the wastewater.
Full-Text [PDF 682 kb]   (926 Downloads) |   |   Full-Text (HTML)  (988 Views)  
Type of Study: Original Article | Subject: Environmental Health
Received: 2018/07/20 | Accepted: 2018/11/8 | Published: 2018/11/25

References
1. 1. Kümmerer K. Drugs in the environment: emission of drugs, diagnostic aids and disinfectants into wastewater by hospitals in relation to other sources-a review. Chemosphere 2001; 45(6-7):957-69.Link. [DOI:10.1016/S0045-6535(01)00144-8]
2. Lindberg R, Jarnheimer P-Å, Olsen B, Johansson M, Tysklind M. Determination of antibiotic substances in hospital sewage water using solid phase extraction and liquid chromatography/mass spectrometry and group analogue internal standards. Chemosphere 2004;57(10):1479-88.Link. [DOI:10.1016/j.chemosphere.2004.09.015]
3. Derakhsheshpoor R, Homayoonfal M, Akbari A, Mehrnia MR. Amoxicillin separation from pharmaceutical wastewater by high permeability polysulfone nanofiltration membrane. J Environ Health Sci Eng 2013;11(1):9.Link. [DOI:10.1186/2052-336X-11-9]
4. Hadi M, Shokoohi R, Ebrahimzadeh Namvar A, Karimi M, Solaimany Aminabad M. Antibiotic resistance of isolated bacteria from urban and hospital wastewaters in Hamadan City. Iranian J Health Environ 2011;4(1):105-14. (Full Text in Persian).Link.
5. Dehghani S, Jonidi Jafari A, Farzadkia M, Gholami M. Investigation of the efficiency of Fenton's advanced oxidation process in sulfadiazine antibiotic removal from aqueous solutions. Arak Med Univ J 2012; 15(66):19-29.(Full Text in Persian).Link.
6. Gómez MJ, Gómez-Ramos MM, Malato O, Mezcua M, Férnandez-Alba AR. Rapid automated screening, identification and quantification of organic micro-contaminants and their main transformation products in wastewater and river waters using liquid chromatography-quadrupole-time-of-flight mass spectrometry with an accurate-mass database. J Chromatogr A 2010;1217(45):7038-54.Link. [DOI:10.1016/j.chroma.2010.08.070]
7. Karthikeyan KG, Meyer MT. Occurrence of antibiotics in wastewater treatment facilities in Wisconsin, USA. Sci Total Environ 2006;361(1-3):196-207.Link [DOI:10.1016/j.scitotenv.2005.06.030]
8. González-Pleiter M, Gonzalo S, Rodea-Palomares I, Leganés F, Rosal R, Boltes K, et al. Toxicity of five antibiotics and their mixtures towards photosynthetic aquatic organisms: Implications for environmental risk assessment. Water Res 2013;47(6):2050-64.Link. [DOI:10.1016/j.watres.2013.01.020]
9. Klavarioti M, Mantzavinos D, Kassinos D. Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environ Int 2009;35(2):402-17.Link. [DOI:10.1016/j.envint.2008.07.009]
10. Wei-hai X, Zhang G, Shi-chun Z, Xiang-dong L, Yu-chun L. Determination of selected antibiotics in the Victoria Harbour and the Pearl River, South China using high-performance liquid chromatography-electrospray ionization tandem mass spectrometry. Environ Pollut 2007;145(3):672-9.Link. [DOI:10.1016/j.envpol.2006.05.038]
11. Putra EK, Pranowo R, Sunarso J, Indraswati N, Ismadji S. Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater: Mechanisms, isotherms and kinetics. Water Res 2009;43(9):2419-30.Link. [DOI:10.1016/j.watres.2009.02.039]
12. Hernando MD, Mezcua M, Fernández-Alba A, Barceló D. Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta 2006;64(2):334-42.Link. [DOI:10.1016/j.talanta.2005.09.037]
13. Ghafouri S, Mirzaali A, Ghorbanpour R, Kamali H, Gholizadeh A. Performance evaluation of wastewater treatment facilites in selected hospitals of North Khorasan in 1391-1392. North Khorasan Univ Med Sci 2014;6(2):371-9.(Full Text in Persian).Link. [DOI:10.29252/jnkums.6.2.371]
14. Homem V, Alves A, Santos L. Amoxicillin degradation at ppb levels by Fenton's oxidation using design of experiments. Sci Total Environ 2010;408(24):6272-80.Link. [DOI:10.1016/j.scitotenv.2010.08.058]
15. Magureanu M, Mandache NB, Parvulescu VI. Degradation of pharmaceutical compounds in water by non-thermal plasma treatment. Water Res 2015;81:124-36.Link. [DOI:10.1016/j.watres.2015.05.037]
16. Rossmann J, Schubert S, Gurke R, Oertel R, Kirch W. Simultaneous determination of most prescribed antibiotics in multiple urban wastewater by SPE-LC-MS/MS. J Chromatogr B 2014;969:162-70.Link. [DOI:10.1016/j.jchromb.2014.08.008]
17. Czekalski N, Sigdel R, Birtel J, Matthews B, Bürgmann H. Does human activity impact the natural antibiotic resistance background? Abundance of antibiotic resistance genes in 21 Swiss lakes. Environ Int 2015;81:45-55.Link. [DOI:10.1016/j.envint.2015.04.005]
18. Safeian S, Moghaddam Z, Hosseiny H, Esmaili A. Antibiotic resistance in isolated negative gram bacteria from intestinal organ of anzali wetland wild common carp. J Environ Sci Technol 2014;15(4):65-74 (Full Text in Persian) Link.
19. Shaghaghi B, Nakhost lotfi M, Mahmmodi NS, Pourshafiei MR. Different Strains of enterococci in sewage treatment plants in tehran. Iranian J Infect Dis Trop Med 2007;12(37):61-6. (Full Text in Persian) Link.
20. Benito-Peña E, Partal-Rodera A, León-González M, Moreno-Bondi M. Evaluation of mixed mode solid phase extraction cartridges for the preconcentration of beta-lactam antibiotics in wastewater using liquid chromatography with UV-DAD detection. Analytica Chimica Acta 2006;556(2):415-22.Link. [DOI:10.1016/j.aca.2005.09.054]
21. Garoma T, Umamaheshwar SK, Mumper A. Removal of sulfadiazine, sulfamethizole, sulfamethoxazole, and sulfathiazole from aqueous solution by ozonation. Chemosphere 2010;79(8):814-20.Link. [DOI:10.1016/j.chemosphere.2010.02.060]
22. Asadi-Ghalhari M, Mehrdadi N, Nabi Bidhendi G. Renewable Energy Production and Saline Water Desalination from municipal Wastewater Using Bio-Electrochemical Processes. J Mazandaran Univ Med Sci 2017;27(149):133-50. (Full Text in Persian) Link.
23. Asadi-Ghalhari M, Mehrdadi N, Nabi-Bidhendi G. Simultaneous Desalination of Sea Water and Electricity Production with New Membrane Technology, Air-Cathode Microbial Desalination Cells. Current World Environ 2015; 10(1):115-20. Link. [DOI:10.12944/CWE.10.1.14]
24. Rismani-Yazdi H, Carver SM, Christy AD, Yu Z, Bibby K, Peccia J, et al. Suppression of methanogenesis in cellulose-fed microbial fuel cells in relation to performance, metabolite formation, and microbial population. Bioresour Technol 2013;129(0):281-8.Link. [DOI:10.1016/j.biortech.2012.10.137]
25. Qu Y, Feng Y, Wang X, Liu J, Lv J, He W, et al. Simultaneous water desalination and electricity generation in a microbial desalination cell with electrolyte recirculation for pH control. Bioresour Technol 2012;106:89-94.Link. [DOI:10.1016/j.biortech.2011.11.045]
26. Bergel A, Féron D, Mollica A. Catalysis of oxygen reduction in PEM fuel cell by seawater biofilm. Electrochem commun 2005;7(9):900-4.Link. [DOI:10.1016/j.elecom.2005.06.006]
27. Yang Q, Feng Y, Logan BE. Using cathode spacers to minimize reactor size in air cathode microbial fuel cells. Bioresour Technol 2012;110:273-7.Link. [DOI:10.1016/j.biortech.2012.01.121]
28. Zhang P, Li K, Liu X. Carnation-like MnO2 modified activated carbon air cathode improve power generation in microbial fuel cells. J Power Sour 2014;264:248-53.Link. [DOI:10.1016/j.jpowsour.2014.04.098]
29. Ghasemi M, Daud WRW, Ismail M, Rahimnejad M, Ismail AF, Leong JX, et al. Effect of pre-treatment and biofouling of proton exchange membrane on microbial fuel cell performance. Int J Hydrogen Energy. 2013;38(13):5480-4.Link. [DOI:10.1016/j.ijhydene.2012.09.148]
30. Kim Y, Logan BE. Series assembly of microbial desalination cells containing stacked electrodialysis cells for partial or complete seawater desalination. Environ Sci Technol 2011;45(13):5840-5.Link. [DOI:10.1021/es200584q]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Archives of Hygiene Sciences

Designed & Developed by : Yektaweb