1. References
2. Xu H, Liu Y, Tay J. Effect of pH on nickel biosorption by aerobic granular sludge. Bioresource Technology 2006; 97 (3): 359-363. [
DOI:10.1016/j.biortech.2005.03.011]
3. Yoon J, Shim E, Joo H. Photocatalytic reduction of hexavalent chromium (Cr(VI)) using rotating TiO2 mesh. Korean J Chem Eng 2009; 26 (5): 1296-1300. [
DOI:10.1007/s11814-009-0228-1]
4. Gupta V, Ali I. Removal of cadmium and nickel from wastewater using bagasse fly ash-a sugar industry waste. Water Res 2003; 37 (16): 4038-4044. [
DOI:10.1016/S0043-1354(03)00292-6]
5. Gupta V, Jain C, Ali I, Sharma M, Saini V. Removal of lead and chromium from wastewater using bagasse fly ash-a sugar industry waste. J. Colloid Interface Sci 2004; 271 (2): 321-328. [
DOI:10.1016/j.jcis.2003.11.007]
6. Chen D, Ray A. Removal of toxic metal ions from wastewater by semiconductor photocatalysis. Chem Eng Sci 2001; 56 (4): 1561-1570. [
DOI:10.1016/S0009-2509(00)00383-3]
7. Sibonia M, Samadi M,, Yangc J, Leed S. Photocatalytic removal of Cr(VI) and Ni(II) by UV/TiO2: kinetic study. Desalination Water Treat 2012; 40 (1-3): 77-83. [
DOI:10.1080/19443994.2012.671144]
8. Caliman A, Teodosiu C, Balasanian I. Applications of heterogeneous photocatalysis for industrial wastewater treatment. Environ Eng Manag J 2002; 1 (2): 187-196. [
DOI:10.30638/eemj.2002.017]
9. Lacour S, Bollinger C, Serpaud B, Chantron D, Arcos R. Removal of heavy metals in industrial wastewaters by ion-exchanger grafted textiles. Anal Chim Acta 2001; 428: 121-132. [
DOI:10.1016/S0003-2670(00)01215-0]
10. Malkoc E, Nuhoglu Y. Removal of Ni(II) ions from aqueous solutions using waste of tea factory: Adsorption on a fixed-bed column. J Hazard Mater 2006; 135 (1-3): 328-336. [
DOI:10.1016/j.jhazmat.2005.11.070]
11. World Health Organization, Guidelines for Drinking Water Quality, 3rd ed. Geneva, Switzerland; 2006. p. 54.
12. Wu W, Peng J. Linear control of electrochemical tubular reactor system-Removal of Cr(VI) from wastewaters. J Taiwan Inst Chem Eng 2011; 42 (3): 498-505. [
DOI:10.1016/j.jtice.2010.08.014]
13. Bhatkhande S, Pangarkar G, Beenackers A. Photocatalytic degradation for environmental applications-a review. J Chem Technol Biotechnol 2001; 77 (1): 102-116. [
DOI:10.1002/jctb.532]
14. Blake M, Webb J, Turchi C, Magrini K. Kinetic and mechanistic overview of titania photocatalyzed oxidation reactions in aqueous solution. Sol Energy Mater Sol Cells 1991; 24 (1-4): 584-593. [
DOI:10.1016/0165-1633(91)90092-Y]
15. Khalil L, Mourad W, Rophael M. Photocatalytic reduction of environmental pollutant Cr(VI) over some semiconductors under UV/visible light illumination. Appl Catal B 1998; 17: 267-273. [
DOI:10.1016/S0926-3373(98)00020-4]
16. Ku Y, Jung I. Photocatalytic reduction of Cr(VI) in aqueous solutions by UV irradiation with the presence of titanium dioxide. Water Res 2001; 35 (1): 135-142. [
DOI:10.1016/S0043-1354(00)00098-1]
17. Saien J, Delavari H, Solymani A. Sono-assisted photocatalytic degradation of styrene-acrylic acid copolymer in aqueous media with nano titania particles and kinetic studies. J Hazard Mater 2010; 177 (1-3): 1031-1039. [
DOI:10.1016/j.jhazmat.2010.01.024]
18. Editorial board of enviroment protection bureau of China, Monitoring and Determination Methods for Water and Wastewater. 4th ed., Beijing, China Environmental Science press; 2002.
19. Sakkas V, Islam M, Stalikas C, Albanis T. Photocatalytic degradation using design of experiments: Areview and example of the congo red degradation. J Hazard Mater 2010; 175 (1-3): 33-44. [
DOI:10.1016/j.jhazmat.2009.10.050]
20. Saien J, Nejati H. Enhanced photocatalytic degradation of pollutants in petroleum refinery wastewater under mild conditions, J Hazard Mater 2007; 148 (1-2): 491-495. [
DOI:10.1016/j.jhazmat.2007.03.001]
21. Ku Y, Jung I. Photocatalytic reduction of Cr(VI) in aqueous solutions by UV irradiation with the presence of titanium dioxide. Water Res 2001; 35 (1): 135-42. [
DOI:10.1016/S0043-1354(00)00098-1]
22. Gratzel M., Energy resources through photochemistry and catalysis, Academic Press, New York; 1983.
23. Joseph C, Gianluca L. Sonophotocatalysis in advanced oxidation process: a short review. Ultrason Sonochem 2009; 16 (5): 583-589. [
DOI:10.1016/j.ultsonch.2009.02.002]
24. Pettine M, Campanella L, Millero F. Reduction of hexavalent chromium by H2O2 in acidic solutions. Environ Sci Technol 2002; 36 (5): 901-907 [
DOI:10.1021/es010086b]
25. Wang S, Chen C, Tzou Y. A mechanism study of light-induced Cr(VI) reduction in acidic solution. J Hazard Mater 2009; 164 (1): 223-228. [
DOI:10.1016/j.jhazmat.2008.07.145]
26. Kyung H, Lee J, Choi W. Simultaneous and synergistic convwesion of dyes and heavy metal ions in aqueous TiO2 suspensions under visible-light illumination. Environ Sci Technol 2005; 39 (7): 2376-2382. [
DOI:10.1021/es0492788]
27. Burns R, Crittenden J, Hand D, Selzer V, Sutter L, Salman S. Effect of inorganic ions in the heterogenous photocatalysis of trichloroethene. J Environ Eng 1999; 125 (1): 77-85. [
DOI:10.1061/(ASCE)0733-9372(1999)125:1(77)]
28. Hsu C, Wang S, Tzou Y. Photocatalytic reduction of Cr(VI) in the presence of NO3 − and Cl− electrolytes as influenced by Fe(III). Environ Sci Technol 2007; 41(22): 7907-7914. [
DOI:10.1021/es0718164]
29. Penpolcharoen M, Amal R, Brungs M. Degradation of sucrose and nitrate over titania coated nano-hematite photo-catalysts. J Nanopart Res 2001; 3: 289-302. [
DOI:10.1023/A:1017929204380]
30. Mack J, Bolton J. Photochemistry of nitrite and nitrate in aqueous solution: a review. J Photochem Photobio 1999; 128 (1-3): 1-13. [
DOI:10.1016/S1010-6030(99)00155-0]
31. Forouzan F, Richards T, Bard A. Photoinduced reaction at TiO2 particles. photodeposition from Ni(II) solutions with oxalate. J Phys Chem A 1996; 100 (46): 18123-18127. [
DOI:10.1021/jp953241f]
32. Wang X, Pehkonen S, Ray A. Removal of aqueous Cr(VI) by a combination of photocatalytic reduction and coprecipitation, Ind Eng Chem. Res 2004; 43 (7): 1665-1672. [
DOI:10.1021/ie030580j]
33. Saien J, Azizi A, Soleymani A. Optimized photocatalytic conversion of Ni(II) ions with very low titania nanoparticles at different temperatures; kinetics and energy consumption. Sep Purif Technol 2014; 134: 187-195. [
DOI:10.1016/j.seppur.2014.07.027]
34. Khataee A, Safarpour M, Zarei M, Aber S. Combined heterogeneous and homogeneous photodegradation of a dye using immobilized TiO2 nanophotocatalyst and modified graphite electrode with carbon nanotubes. J Mol Catal A 2012; (363- 364): 58- 68. [
DOI:10.1016/j.molcata.2012.05.016]
35. Bolton J, Bircher K, Tumas W, Tolman C. Figures-of-merit for the technical development and application of advanced oxidation technologies for both electric and solar-driven systems. Pure Appl Chem 2001; 73 (4): 627-637. [
DOI:10.1351/pac200173040627]
36. http://www.eia.doe.gov (US Government Energy Information Administration, Independent Statistics and Analysis); 2017.
37. Wang X, Pehkonen S, Ray A. Removal of aqueous Cr(VI) by a combination of photocatalytic reduction and coprecipitation. Ind Eng Chem Res 2004; 43(7): 1665-1672. [
DOI:10.1021/ie030580j]
38. Jiang F, Zheng Z, Xu Z, Zheng S, Guo Z, Chen L. Aqueous Cr(VI) photo-reduction catalyzed by TiO2 and sulfated TiO2. J Hazard Mater 2006; 134(1-3): 94-103. [
DOI:10.1016/j.jhazmat.2005.10.041]
39. Siemon U, Bahnemann D, Testa J, Rodriguez D, Litter M, Bruno N. Heterogeneous photocatalytic reactions comparing TiO2 and Pt/TiO2. J Photochem Photobiol A 2002; 148 (1-3): 247-55. [
DOI:10.1016/S1010-6030(02)00050-3]