Volume 7, Issue 2 (Spring 2018 2018)                   Arch Hyg Sci 2018, 7(2): 126-133 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

RaheliNamin B, Mohseni B. Integrated Artificial Neural Network Modeling and GIS for Identification of Important Factor on Groundwater Hydrochemistry (Fe-,Ca2+ and PO4-3). Arch Hyg Sci 2018; 7 (2) :126-133
URL: http://jhygiene.muq.ac.ir/article-1-249-en.html
1- School of Natural Resources & Environment, Malayer University, and lecturer of Payam Noor University
2- Instructor Board, Department of Natural Resources, Payam Noor University
Abstract:   (3667 Views)
Background & Aims of the Study: Groundwater resources are a crucial component of the ecosystem. Management and cleanup of contamination from groundwater resources requires a long term strategy and a huge amount of investments. Artificial neural networks (ANN) and Geographic Information System (GIS) can be useful in determining management strategies. To protect these valuable resources, groundwater hydrochemistry (Fe-, Ca2+ and PO4-3) spatial distribution is evaluated; also, the important parameters that affect their rate and spatial distribution are identified.
Materials and Methods: This study employed GIS technique and Modeling technique based on artificial neural network for identification and investigation of important factor on groundwater hydrochemistry such as Fe-, Ca2+ and PO4-3. The case study is Ghareh-su basin of Golestan province of Iran. The maps of land use, soil, geology, population density, digital elevation model, distance from built-up areas, roads and rivers, cultivated land density and water table are the parameters that used for running ANN model. Sensitivity analyses were also performed to identify the effective parameters of ground water hydrochemistry
Results: The results show that the concentration of the parameters around Gorgan and Kordkuy cities, and areas where the cultivated land is denser, is high.
Results indicated that the highest concentrations of these parameters were located around Gorgan and Kordkuy cities and where the cultivated lands have a high density. The present contribution confirms that a significant relation between the concentration of pollutants in groundwater resources and different land uses/land covers is found. Soil type, geological structure and high groundwater level in the north of Ghareh-su basin have a great impact on groundwater quality.
Conclusion: These techniques have successfully implemented in groundwater hydrochemistry mapping of Ghareh-su basin.
Full-Text [PDF 655 kb]   (1383 Downloads) |   |   Full-Text (HTML)  (839 Views)  
Type of Study: Original Article | Subject: Environmental Health
Received: 2018/01/12 | Accepted: 2018/04/27 | Published: 2018/05/1

References
1. 1. -Gyananath, G.; Islam, S.R.; Shewdikar, S.V. Assessment of Environmental Parameter on ground water quality. Indian journal of environmental protection 2001; 21, 289-294.
2. Lee,S.M, Min, K.D, Woo, N.C, Kim, Y.J, Ahn, C.H. Statistical models for the assessment of nitrate contamination in urban groundwater using GIS. Environmental Geology 2003; 44:210-221 [DOI:10.1007/s00254-002-0747-0]
3. Hwang, S.I., Lee, S.H. and Lee, D.S. Development of preliminary hazard ranking system for underground storage tanks using GIS, Journal of the Korean Society of Groundwater Environment 1997; 4, 122-129.
4. Almasri, M. N., Kaluarachchi, J.J. Modular neural networks to predict the nitrate distribution in ground water using the on-ground nitrogen loading and recharge data. Environmental Modelling & Software 2005; 20, 851e871 [DOI:10.1016/j.envsoft.2004.05.001]
5. Ahn H, Chon H. Assessment of Groundwater Contamination Using Geographic Information System. Environmental Geochemistry and Health 1999; 21: 273-289 [DOI:10.1023/A:1006697512090]
6. Dawson, C.W., Wilby, R.L. Hydrologic modeling using artificial neural networks. Prog. Phys. Geog 2001; 25 (1), 80-108 [DOI:10.1191/030913301674775671]
7. Pijanowski. B.C., Brown, D. G., Shellito, B. A., Manik, G. A. Using neural networks and GIS to forecast land use changes: a Land Transformation Model. Computers, Environment and Urban Systems 2002; 26 .553-575 [DOI:10.1016/S0198-9715(01)00015-1]
8. Romero C, Ventura S. Educational data mining: A survey from 1995 to 2005. Expert Systems with Applications 2007; 33, 135-146 [DOI:10.1016/j.eswa.2006.04.005]
9. Sreekanth, P. D., Geethanjali, N., Sreedevi, P. D. Ahmed, S., Kumar, N. R., Jayanthi, P. D. K. Forecasting groundwater level using artificial neural networks. CURRENT SCIENCE, 2009; 96, NO. 7, 10.
10. Govindaraju RS, Rao AR. Artificial neural networks in hydrology. Boston: Kluwer Academic Publishers; 2000. [DOI:10.1007/978-94-015-9341-0]
11. Ray, C., Klindworth, K. Neural networks for agrichemical vulnerability assessment of rural private wells. Journal of Hydrologic Engineering 2000; 5 (2), 162e171. [DOI:10.1061/(ASCE)1084-0699(2000)5:2(162)]
12. Babiker IS, Moahmed MAA, Terao H, Kato K, Ohta K. Assessment of groundwater contamination by nitrate leaching from intensive vegetable cultivation using geographical information system. Environment International 2004; 29, 1009- 1017 [DOI:10.1016/S0160-4120(03)00095-3]
13. Sahoo GB, Ray C, Mehnert E, Keefer D.A . Application of artificial neural networks to assess pesticide contamination in shallow groundwater. Science of the Total Environment 2006; 367, 234-251. [DOI:10.1016/j.scitotenv.2005.12.011]
14. Jiang Y, Yuan D, Zhang C, Kuang M, Wang J, Xie S, Li L, Zhang G, He . Impact of land-use change on soil properties in a typical karst agricultural region of Southwest China: a case study of Xiaojiang watershed, Yunnan. Environ Geol 2006; 50 (6):911-988 [DOI:10.1007/s00254-006-0262-9]
15. Jalali M. Phosphorous concentration, solubility and species in the groundwater in a semi-arid basin, southern Malayer, western Iran. Environ Geol 2009; 57(5):1011-1020 [DOI:10.1007/s00254-008-1387-9]
16. Nas B., Berktay A. groundwater quality mapping in urban groundwater using GIS. Environ Monit Assess 2008. DOI 10.1007/s10661-008- 0689-4 [DOI:10.1007/s10661-008-0689-4]
17. Chidambaram S, Peter A, Prasanna M V, Karmegam U, Balaji K, Ramesh R, Paramaguru P, Pethaperumal S. A study on the impact of pattern in the groundwater quality in and around madurai region, south India - using GIS techniques. Journal of Earh Science 2010; 4(1):27-31. [DOI:10.3923/ojesci.2010.27.31]
18. RaheliNamin B, Salman Mahiny A, Moradi H R. Quantification of Underground Water Quality Parameters Using Land Use/Cover (Ghareh-Su Watershed, Golestan Province). Journal of Natural Environmental, Iranian Journal of Natural Resources; 65(1): 67-82. In Persian.
19. McLay CDA, Dragten R, Sparling G, Selvarajah N . Predicting groundwater nitrate concentrations in a region of mixed agricultural land use: a comparison of three approaches. Environ Pollut 2001; 115:191- 204 [DOI:10.1016/S0269-7491(01)00111-7]
20. Watson D F. Contouring: a guide to the analysis and display of spatial data. Oxford, Pergamon.1992
21. Wong F T, Kanok-Nukulchai W. Kriging-Based Finite Element Method: Element-By-Element Kriging Interpolation. Civil Engineering Dimension, 2009; 11, 1, 15-22
22. Pal M, Mather P . An assessment of the effectiveness of decision tree methods for land cover classification. Remote Sensing of Environment 2003; 86, 554-565 [DOI:10.1016/S0034-4257(03)00132-9]
23. Maier H.R., Dandy G C. Neural networks for the prediction and forecasting of water resources variables: A review of modeling issues and applications. Environmental Modelling & Software 2000; 15 (1), 101-124 [DOI:10.1016/S1364-8152(99)00007-9]
24. Ngah S A, Nwankwoala H O. Iron (Fe2+) occurrence and distribution in groundwater sources in different geomorphologic zones of Eastern Niger Delta. Applied Science Research, 2013; 5 (2):266-272
25. Chae G T, Yun S T, Choi B Y, Yu S Y, Jo H Y, Mayer B, Kim Y J, Lee J Y, 2008. Hydrochemistry of urban groundwater, Seoul, Korea: The impact of subway tunnels on groundwater quality. Journal of Contaminant Hydrology 101 2008; 42-52 [DOI:10.1016/j.jconhyd.2008.07.008]
26. Jiang Y, Wu Y, Groves Ch, Yuan D, Kambesis P. Natural and anthropogenic factors affecting the groundwater quality in the Nandong karst underground river system in Yunan. China, Journal of Contaminant Hydrology 2009; 109, 49-61. [DOI:10.1016/j.jconhyd.2009.08.001]
27. Belkhiri L, Mouni L, Boudoukha A. Geochemical evolution of groundwater in an alluvial aquifer: Case of El Eulma aquifer, East Algeria. Journal of African Earth Sciences 2012; 66-67 (2012) 46-55. [DOI:10.1016/j.jafrearsci.2012.03.001]
28. Angier J.T., Mccarty G.W., Prestegard K.L. Hydrology of a first-order Riparian Zone and Stream. Mid-Atlantic Plain, Maryland. Journal of Hydrology 2005; 309(1-4): 149-166. [DOI:10.1016/j.jhydrol.2004.11.017]
29. Morgenstern U, Daughney C J. Groundwater age for identification of baseline groundwater quality and impacts of land-use intensification - The National Groundwater Monitoring Programme of New Zealand. Journal of Hydrology 2012; 456-457 (2012) 79-93 [DOI:10.1016/j.jhydrol.2012.06.010]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Archives of Hygiene Sciences

Designed & Developed by : Yektaweb