Volume 7, Issue 4 (Autumn 2018)                   Arch Hyg Sci 2018, 7(4): 288-294 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Moradi R, Ganjali A, Yari A R, Mahmoudian M H. Photocatalytic Degradation of Ciprofloxacin pharmacy pollutant in Batch Photoreactor. Arch Hyg Sci 2018; 7 (4) :288-294
URL: http://jhygiene.muq.ac.ir/article-1-343-en.html
1- Young Researchers and Elite Club, Arak Branch, Islamic Azad University, Arak, Iran
2- Department of Experimental Science, Kahnooj Branch, Islamic Azad University, Kahnooj, Iran
3- Research Center for Environmental Pollutants, Qom University of Medical Sciences, Qom, Iran.
4- Research Center for Environmental Pollutants and Department of Environmental Health Engineering, Qom University of Medical Sciences, Qom, Iran.
Abstract:   (4129 Views)
Background & Aims of the Study: Pharmaceutical compounds have a variety of forms and applications. Specific amounts of toxic organic compounds in the process of their manufacturing and utilization cause environmental pollution problems. So, degradation and removal these compounds are necessary. The aim of this paper is the study photocatalytic degradation of ciprofloxacin drug in aqueous solution using photo-Fenton process in a batch photoreactor.
Materials and methods: This is an experimental study on a laboratory scale. Fe2+ ions as a homogeneous catalyst applied for the degradation of ciprofloxacin in aqueous solution. The study was performed on synthetic wastewaters that contain ciprofloxacin as a pollutant. The effect of operational parameters such as pH, Fe2+ concentration and H2O2 concentration on reaction kinetics were studied and the optimum conditions were determined for the photocatalytic degradation of ciprofloxacin using one factor at the time (OFAT) experimental design method.
Results: The optimal conditions were obtained at pH =3, Fe2+ concentration at 35 ppm and H2O2 concentration at 25 ppm. A first order reaction with rate constant (k=0.0291 min−1) was observed for the photocatalytic degradation reaction. The chemical oxygen demand (COD) analysis of the ciprofloxacin under optimum conditions showed 92% reduction COD in a 49 min period.
Conclusions: The results showed that the photo-Fenton process can be a suitable alternative method to degradation of pharmaceutical compounds from synthesis wastewaters.
 
 
Full-Text [PDF 582 kb]   (1067 Downloads) |   |   Full-Text (HTML)  (935 Views)  
Type of Study: Original Article | Subject: Environmental Health
Received: 2018/06/5 | Accepted: 2018/12/27 | Published: 2018/12/29

References
1. Elmolla ES, Chaudhuri M. Degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution by the UV/ZnO photocatalytic process. Journal of hazardous materials. 2010;173(1-3):445-9. Link [DOI:10.1016/j.jhazmat.2009.08.104]
2. Ikehata K, Jodeiri Naghashkar N, Gamal El-Din M. Degradation of aqueous pharmaceuticals by ozonation and advanced oxidation processes: a review. Ozone: Science and Engineering. 2006;28(6):353-414. Link [DOI:10.1080/01919510600985937]
3. Hojat Ansari S, Giahi M. Photochemical Degradation of Fluocinolone Acetonidin Drug in Aqueous Solutions Using Nanophotocatalyst ZnO Doped by C, N, and S. Iranian Journal of Chemistry and Chemical Engineering (IJCCE). 2017;36(3):183-9. Link
4. Carballa M, Omil F, Lema JM. Comparison of predicted and measured concentrations of selected pharmaceuticals, fragrances and hormones in Spanish sewage. Chemosphere. 2008;72(8):1118-23. Link [DOI:10.1016/j.chemosphere.2008.04.034]
5. Halling-Sørensen B, Nielsen SN, Lanzky P, Ingerslev F, Lützhøft HH, Jørgensen S. Occurrence, fate and effects of pharmaceutical substances in the environment-A review. Chemosphere. 1998;36(2):357-93. Link [DOI:10.1016/S0045-6535(97)00354-8]
6. Joss A, Andersen H, Ternes T, Richle PR, Siegrist H. Removal of estrogens in municipal wastewater treatment under aerobic and anaerobic conditions: consequences for plant optimization. Environmental science & technology. 2004;38(11):3047-55. Link [DOI:10.1021/es0351488]
7. Lai WW-P, Lin HH-H, Lin AY-C. TiO2 photocatalytic degradation and transformation of oxazaphosphorine drugs in an aqueous environment. Journal of hazardous materials. 2015;287:133-41. Link [DOI:10.1016/j.jhazmat.2015.01.045]
8. Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, et al. Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999− 2000: A national reconnaissance. Environmental science & technology. 2002;36(6):1202-11. Link [DOI:10.1021/es011055j]
9. El-Kemary M, El-Shamy H, El-Mehasseb I. Photocatalytic degradation of ciprofloxacin drug in water using ZnO nanoparticles. Journal of Luminescence. 2010;130(12):2327-31. Link [DOI:10.1016/j.jlumin.2010.07.013]
10. Peng H, Pan B, Wu M, Liu Y, Zhang D, Xing B. Adsorption of ofloxacin and norfloxacin on carbon nanotubes: hydrophobicity-and structure-controlled process. Journal of hazardous materials. 2012;233:89-96. Link [DOI:10.1016/j.jhazmat.2012.06.058]
11. El-Shafey E-SI, Al-Lawati H, Al-Sumri AS. Ciprofloxacin adsorption from aqueous solution onto chemically prepared carbon from date palm leaflets. J Environ Sci. 2012;24(9):1579-86. Link [DOI:10.1016/S1001-0742(11)60949-2]
12. Linares-Hernández I, Barrera-Díaz C, Bilyeu B, Juárez-GarcíaRojas P, Campos-Medina E. A combined electrocoagulation-electrooxidation treatment for industrial wastewater. Journal of hazardous materials. 2010;175(1-3):688-94. Link [DOI:10.1016/j.jhazmat.2009.10.064]
13. Garoma T, Umamaheshwar SK, Mumper A. Removal of sulfadiazine, sulfamethizole, sulfamethoxazole, and sulfathiazole from aqueous solution by ozonation. Chemosphere. 2010;79(8):814-20. [DOI:10.1016/j.chemosphere.2010.02.060]
14. Nawrocki J, Kasprzyk-Hordern B. The efficiency and mechanisms of catalytic ozonation. Applied Catalysis B: Environmental. 2010;99(1-2):27-42. Link [DOI:10.1016/j.apcatb.2010.06.033]
15. Chatzitakis A, Berberidou C, Paspaltsis I, Kyriakou G, Sklaviadis T, Poulios I. Photocatalytic degradation and drug activity reduction of chloramphenicol. Water Research. 2008;42(1-2):386-94. Link [DOI:10.1016/j.watres.2007.07.030]
16. Lin AY-C, Lin C-F, Chiou J-M, Hong PA. O3 and O3/H2O2 treatment of sulfonamide and macrolide antibiotics in wastewater. Journal of hazardous materials. 2009;171(1-3):452-8. Link [DOI:10.1016/j.jhazmat.2009.06.031]
17. Nazari S, Yari AR, Mahmodian MH, Tanhaye Reshvanloo M, Alizadeh Matboo S, Majidi G, et al. Application of H2O2 and H2O2/Fe0 in removal of Acid Red 18 dye from aqueous solutions. Archives of Hygiene Sciences. 2013;2(3):104-10. Link
18. Gonzalez-Olmos R, Martin MJ, Georgi A, Kopinke F-D, Oller I, Malato S. Fe-zeolites as heterogeneous catalysts in solar Fenton-like reactions at neutral pH. Applied Catalysis B: Environmental. 2012;125:51-8. Link [DOI:10.1016/j.apcatb.2012.05.022]
19. Yu L, Chen J, Liang Z, Xu W, Chen L, Ye D. Degradation of phenol using Fe3O4-GO nanocomposite as a heterogeneous photo-Fenton catalyst. Separation and Purification Technology. 2016;171:80-7. Link [DOI:10.1016/j.seppur.2016.07.020]
20. Pérez-Moya M, Graells M, Castells G, Amigó J, Ortega E, Buhigas G, et al. Characterization of the degradation performance of the sulfamethazine antibiotic by photo-Fenton process. Water Research. 2010;44(8):2533-40. Link [DOI:10.1016/j.watres.2010.01.032]
21. Babić S, Zrnčić M, Ljubas D, Ćurković L, Škorić I. Photolytic and thin TiO2 film assisted photocatalytic degradation of sulfamethazine in aqueous solution. Environmental science and pollution research. 2015;22(15):11372-86. Link [DOI:10.1007/s11356-015-4338-5]
22. Kang S-F, Liao C-H, Po S-T. Decolorization of textile wastewater by photo-Fenton oxidation technology. Chemosphere. 2000;41(8):1287-94. Link [DOI:10.1016/S0045-6535(99)00524-X]
23. Safarzadeh-Amiri A, Bolton JR, Cater SR. The use of iron in advanced oxidation processes. Journal of Advanced Oxidation Technologies. 1996;1(1):18-26. Link [DOI:10.1515/jaots-1996-0105]
24. Gogate PR, Pandit AB. A review of imperative technologies for wastewater treatment II: hybrid methods. Advances in Environmental Research. 2004;8(3-4):553-97. Link [DOI:10.1016/S1093-0191(03)00031-5]
25. Lima MJ, Silva CG, Silva AM, Lopes JC, Dias MM, Faria JL. Homogeneous and heterogeneous photo-Fenton degradation of antibiotics using an innovative static mixer photoreactor. Chemical Engineering Journal. 2017;310:342-51. Link [DOI:10.1016/j.cej.2016.04.032]
26. Bobu M, Yediler A, Siminiceanu I, Schulte-Hostede S. Degradation studies of ciprofloxacin on a pillared iron catalyst. Applied Catalysis B: Environmental. 2008;83(1-2):15-23. Link [DOI:10.1016/j.apcatb.2008.01.029]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Archives of Hygiene Sciences

Designed & Developed by : Yektaweb