1. Elmolla ES, Chaudhuri M. Degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution by the UV/ZnO photocatalytic process. Journal of hazardous materials. 2010;173(1-3):445-9. Link [
DOI:10.1016/j.jhazmat.2009.08.104]
2. Ikehata K, Jodeiri Naghashkar N, Gamal El-Din M. Degradation of aqueous pharmaceuticals by ozonation and advanced oxidation processes: a review. Ozone: Science and Engineering. 2006;28(6):353-414. Link [
DOI:10.1080/01919510600985937]
3. Hojat Ansari S, Giahi M. Photochemical Degradation of Fluocinolone Acetonidin Drug in Aqueous Solutions Using Nanophotocatalyst ZnO Doped by C, N, and S. Iranian Journal of Chemistry and Chemical Engineering (IJCCE). 2017;36(3):183-9. Link
4. Carballa M, Omil F, Lema JM. Comparison of predicted and measured concentrations of selected pharmaceuticals, fragrances and hormones in Spanish sewage. Chemosphere. 2008;72(8):1118-23. Link [
DOI:10.1016/j.chemosphere.2008.04.034]
5. Halling-Sørensen B, Nielsen SN, Lanzky P, Ingerslev F, Lützhøft HH, Jørgensen S. Occurrence, fate and effects of pharmaceutical substances in the environment-A review. Chemosphere. 1998;36(2):357-93. Link [
DOI:10.1016/S0045-6535(97)00354-8]
6. Joss A, Andersen H, Ternes T, Richle PR, Siegrist H. Removal of estrogens in municipal wastewater treatment under aerobic and anaerobic conditions: consequences for plant optimization. Environmental science & technology. 2004;38(11):3047-55. Link [
DOI:10.1021/es0351488]
7. Lai WW-P, Lin HH-H, Lin AY-C. TiO2 photocatalytic degradation and transformation of oxazaphosphorine drugs in an aqueous environment. Journal of hazardous materials. 2015;287:133-41. Link [
DOI:10.1016/j.jhazmat.2015.01.045]
8. Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, et al. Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999− 2000: A national reconnaissance. Environmental science & technology. 2002;36(6):1202-11. Link [
DOI:10.1021/es011055j]
9. El-Kemary M, El-Shamy H, El-Mehasseb I. Photocatalytic degradation of ciprofloxacin drug in water using ZnO nanoparticles. Journal of Luminescence. 2010;130(12):2327-31. Link [
DOI:10.1016/j.jlumin.2010.07.013]
10. Peng H, Pan B, Wu M, Liu Y, Zhang D, Xing B. Adsorption of ofloxacin and norfloxacin on carbon nanotubes: hydrophobicity-and structure-controlled process. Journal of hazardous materials. 2012;233:89-96. Link [
DOI:10.1016/j.jhazmat.2012.06.058]
11. El-Shafey E-SI, Al-Lawati H, Al-Sumri AS. Ciprofloxacin adsorption from aqueous solution onto chemically prepared carbon from date palm leaflets. J Environ Sci. 2012;24(9):1579-86. Link [
DOI:10.1016/S1001-0742(11)60949-2]
12. Linares-Hernández I, Barrera-Díaz C, Bilyeu B, Juárez-GarcíaRojas P, Campos-Medina E. A combined electrocoagulation-electrooxidation treatment for industrial wastewater. Journal of hazardous materials. 2010;175(1-3):688-94. Link [
DOI:10.1016/j.jhazmat.2009.10.064]
13. Garoma T, Umamaheshwar SK, Mumper A. Removal of sulfadiazine, sulfamethizole, sulfamethoxazole, and sulfathiazole from aqueous solution by ozonation. Chemosphere. 2010;79(8):814-20. [
DOI:10.1016/j.chemosphere.2010.02.060]
14. Nawrocki J, Kasprzyk-Hordern B. The efficiency and mechanisms of catalytic ozonation. Applied Catalysis B: Environmental. 2010;99(1-2):27-42. Link [
DOI:10.1016/j.apcatb.2010.06.033]
15. Chatzitakis A, Berberidou C, Paspaltsis I, Kyriakou G, Sklaviadis T, Poulios I. Photocatalytic degradation and drug activity reduction of chloramphenicol. Water Research. 2008;42(1-2):386-94. Link [
DOI:10.1016/j.watres.2007.07.030]
16. Lin AY-C, Lin C-F, Chiou J-M, Hong PA. O3 and O3/H2O2 treatment of sulfonamide and macrolide antibiotics in wastewater. Journal of hazardous materials. 2009;171(1-3):452-8. Link [
DOI:10.1016/j.jhazmat.2009.06.031]
17. Nazari S, Yari AR, Mahmodian MH, Tanhaye Reshvanloo M, Alizadeh Matboo S, Majidi G, et al. Application of H2O2 and H2O2/Fe0 in removal of Acid Red 18 dye from aqueous solutions. Archives of Hygiene Sciences. 2013;2(3):104-10. Link
18. Gonzalez-Olmos R, Martin MJ, Georgi A, Kopinke F-D, Oller I, Malato S. Fe-zeolites as heterogeneous catalysts in solar Fenton-like reactions at neutral pH. Applied Catalysis B: Environmental. 2012;125:51-8. Link [
DOI:10.1016/j.apcatb.2012.05.022]
19. Yu L, Chen J, Liang Z, Xu W, Chen L, Ye D. Degradation of phenol using Fe3O4-GO nanocomposite as a heterogeneous photo-Fenton catalyst. Separation and Purification Technology. 2016;171:80-7. Link [
DOI:10.1016/j.seppur.2016.07.020]
20. Pérez-Moya M, Graells M, Castells G, Amigó J, Ortega E, Buhigas G, et al. Characterization of the degradation performance of the sulfamethazine antibiotic by photo-Fenton process. Water Research. 2010;44(8):2533-40. Link [
DOI:10.1016/j.watres.2010.01.032]
21. Babić S, Zrnčić M, Ljubas D, Ćurković L, Škorić I. Photolytic and thin TiO2 film assisted photocatalytic degradation of sulfamethazine in aqueous solution. Environmental science and pollution research. 2015;22(15):11372-86. Link [
DOI:10.1007/s11356-015-4338-5]
22. Kang S-F, Liao C-H, Po S-T. Decolorization of textile wastewater by photo-Fenton oxidation technology. Chemosphere. 2000;41(8):1287-94. Link [
DOI:10.1016/S0045-6535(99)00524-X]
23. Safarzadeh-Amiri A, Bolton JR, Cater SR. The use of iron in advanced oxidation processes. Journal of Advanced Oxidation Technologies. 1996;1(1):18-26. Link [
DOI:10.1515/jaots-1996-0105]
24. Gogate PR, Pandit AB. A review of imperative technologies for wastewater treatment II: hybrid methods. Advances in Environmental Research. 2004;8(3-4):553-97. Link [
DOI:10.1016/S1093-0191(03)00031-5]
25. Lima MJ, Silva CG, Silva AM, Lopes JC, Dias MM, Faria JL. Homogeneous and heterogeneous photo-Fenton degradation of antibiotics using an innovative static mixer photoreactor. Chemical Engineering Journal. 2017;310:342-51. Link [
DOI:10.1016/j.cej.2016.04.032]
26. Bobu M, Yediler A, Siminiceanu I, Schulte-Hostede S. Degradation studies of ciprofloxacin on a pillared iron catalyst. Applied Catalysis B: Environmental. 2008;83(1-2):15-23. Link [
DOI:10.1016/j.apcatb.2008.01.029]