[Home ] [Archive]    
:: Volume 8, Issue 1 (Winter 2019) ::
2019, 8(1): 1-8 Back to browse issues page
Study Degradation of 4-(2-Pyridylazo)Resorcinol Dye in Circulating Fludized Bed Photo Reactor Using ZnO Nanoparticles
Reza Moradi * 1, Ali Bodaghi1 , Javad Hosseini1 , Amin Ganjali2
1- Department of Chemistry, Tuyserkan Branch, Islamic Azad University, Tuyserkan, Iran
2- Department of Experimental Science, Kahnooj Branch, Islamic Azad University, Kahnooj, Iran
Abstract:   (3217 Views)
Background & Aims of the Study: In this study, 4-(2-pyridylazo) resorcinol (PAR) as model azo dye was used. In spectroscopic measurements and studies of PAR reagent as a ligand are used to formation a complex with toxic metals. So, removal and degradation these compounds of wastewaters are necessary. The aim of this study is the degradation of PAR from aqueous solutions in circulating fludized bed photo reactor (CFBPR) using ZnO powder. The UV/O2 system was used for dye degradation.
Materials & Methods: ZnO powder used a catalyst for the degradation of dye in aqueous solution. ZnO powder has been characterized by scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR). The effect of operational parameters such as: pH, catalyst dosage and temperature were studied. The effect of UV irradiation, UV/O2 and UV/O2/ZnO on photocatalytic degradation of PAR were studied. The reaction kinetic was studied. The optimum conditions were determined using design of experimental based one factor at the time (OFAT) method.
Results: The optimum conditions for this reaction were obtained at pH=10, catalyst dosage=20 mg/L, and temperature=40°C. The pseudo first order reaction with rate constant (k=0.0105 min−1) in T=40°C was observed for the photocatalytic degradation of PAR. Activation energy (Ea) for the degradation of PAR was obtained as 48.12 (kJ/mol). These experiments demonstrated that UV/O2 and ZnO catalyst were needed for the effective degradation of dye.
Conclusions: The results showed that the photocatalytic process can be suitable to degradation PAR dye from aqueous solutions using ZnO catalyst.
Keywords: ZnO, 4-(2-pyridylazo) resorcinol, Photo reactor, Photocatalyst, Iran
Full-Text [PDF 523 kb]   (642 Downloads) |   |   Full-Text (HTML)  (515 Views)  
Type of Study: Original Article | Subject: Environmental Health
Received: 2018/06/5 | Accepted: 2019/02/28 | Published: 2019/03/14
1. References
2. Bayramoglu G, Arica MY. Enzymatic removal of phenol and p-chlorophenol in enzyme reactor: horseradish peroxidase immobilized on magnetic beads. J Hazard Mater 2008;156(1-3):148-55. Link [DOI:10.1016/j.jhazmat.2007.12.008]
3. Tepe O, Dursun AY. Combined effects of external mass transfer and biodegradation rates on removal of phenol by immobilized ralstonia eutropha in a packed bed reactor. J Hazard Mater 2008; 151(1): 9-16. Link [DOI:10.1016/j.jhazmat.2007.05.049]
4. Ghasemi J, Peyman H, Meloun M. Study of complex formation between 4-(2-Pyridylazo) Resorcinol and Al3+, Fe3+, Zn2+ and Cd2+ ions in an aqueous solution at 0.1 M ionic strength. J Chem Eng Data 2007; 52 (4): 1171-78. Link [DOI:10.1021/je060325g]
5. Deng Sh, Zhang G, Wang P. 4-(2-Pyridylazo)-Resorcinol functionalized polyacrylonitrile fiber through microwave irradiation method for the simultaneous optical detection and removal of heavy metals from water. Environ Sci: Water Res Technol 2018; 4 (4): 487-92. Link [DOI:10.1039/C8EW00045J]
6. Hsu Ch-Ch, Wu NL. Synthesis and photocatalytic activity of ZnO/ZnO2 composite. J Photochem Photobio A Chem 2005; 172(3): 269-74. Link [DOI:10.1016/j.jphotochem.2004.12.014]
7. Look DC. Recent advances in ZnO materials and devices. Mater Sci Eng B 2001; 80(1-3) 383-7. Link [DOI:10.1016/S0921-5107(00)00604-8]
8. Sun J-H, Dong S-Y, Wang Y-K, Sun S-P. Preparation and photocatalytic property of a novel dumbbell-shaped ZnO microcrystal photocatalyst. J Hazard Mater 2009;172(2-3): 1520-6. Link [DOI:10.1016/j.jhazmat.2009.08.022]
9. Kansal SK, Singh M, Sud D. Studies on photodegradation of two commercial dyes in aqueous phase using different photocatalysts. J Hazard Mater 2007;141(3): 581-90. Link [DOI:10.1016/j.jhazmat.2006.07.035]
10. Dargahi A, Samaghandi M, Vaziri Y, Ahmadidoost G. Photocatalytic Activity of Zinc Oxide Nanoparticles Coated on Activated Carbon Made from Mango Seed in Removing Acid Black 1 from Aqueous Solutions. Arch Hyg Sci 2018;7(4):242-50. Link [DOI:10.29252/ArchHygSci.7.4.242]
11. Lindross S, Leskela M. Growth of zinc peroxide (ZnO2) and zinc oxide (ZnO) thin films by the successive ionic layer adsorption and reaction-SILAR-technique. Inter J Inorg Mater 2000; 2(2-3):197-201. Link [DOI:10.1016/S1466-6049(00)00017-9]
12. Uekawa N, Kajiwara J, Mochizuki N, Kakegawa K, Sasaki Y. Synthesis of ZnO nanoparticles by decomposition of zinc peroxide. Chem Lett 2001;23(1):606-7. Link [DOI:10.1246/cl.2001.606]
13. Ogawa MF, Natsume Y, Hirayama T, Sakata H. Preparation and electrical properties of undoped zinc-oxide films by CVD. J Mater Sci Lett 1990; 9(3):1351-3. [DOI:10.1007/BF00726543]
14. Liu B, Zeng HC. Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm, J Am Chem Soc 2003;125(15):4430-1. Link [DOI:10.1021/ja0299452]
15. Music S, Popovic S, Maljkovic M, Dragcevic D. Influence of synthesis procedure of the formation and properties of zinc oxide. J Alloy Comp 2002;347(1-2):324-32. Link [DOI:10.1016/S0925-8388(02)00792-2]
16. Nishio J, Tokumura M, Znad H-T, Kawase Y. Photocatalytic decolorization of azo-dye with zinc oxide powder in an external UV light irradiation slurry photoreactor. J Hazard Mater 2006;138(1):106-15. Link [DOI:10.1016/j.jhazmat.2006.05.039]
17. Irani M, Mohammadi T, Mohebbi S. Photocatalytic degradation of Methylene Blue with ZnO nanoparticles; a joint experimental and theoretical study. J Mex Chem Soc 2016;60(4):218-25. Link [DOI:10.29356/jmcs.v60i4.115]
18. Lin H-F, Liao S-C, Hung S-W. The dc thermal plasma synthesis of ZnO nanoparticles for visible-light photocatalyst. J Photochem Photobiol A: Chem 2005;174(1):82-7. Link [DOI:10.1016/j.jphotochem.2005.02.015]
19. Xu Y, Xu H, Li H, Xia J, Liu Ch, Liu L. Enhanced photocatalytic activity of new photocatalyst Ag/AgCl/ZnO. J Alloy Comp 2011; 509(7): 3286-92. Link [DOI:10.1016/j.jallcom.2010.11.193]
20. Yuvaraj S, Manikandan N, Vinitha G. Investigation on the behavioral difference in third order nonlinearity and optical limiting of Mn0.55Cu0.45Fe2O4 nanoparticles annealed at different temperatures. Mater Res Express 2017;4(11):115027. Link [DOI:10.1088/2053-1591/aa97eb]
21. Pang H, Zhang Y, Cheng T, Lai W-Y, Huang W. Uniform manganese hexacyanoferrate hydrate nanocubes featuring superior performance for low-cost supercapacitors and nonenzymatic electrochemical sensors. Nanoscale 2015;7(38):16012-9. Link [DOI:10.1039/C5NR04322K]
22. Chang J, Waclawik ER. Experimental and theoretical investigation of ligand effects on the synthesis of ZnO nanoparticles. J Nanopart Res 2012;14(8):1012. Link [DOI:10.1007/s11051-012-1012-4]
23. Bomila R, Venkatesan A, Srinivasan S. Structural, luminescence and photocatalytic properties of pure and octylamine capped ZnO nanoparticles. Optik-International Journal for Light and Electron Optics 2018;158:565-73. Link [DOI:10.1016/j.ijleo.2017.12.141]
24. Muruganandham M, Swaminathan M. Photochemical oxidation of reactive azo dye with UV-H2O2 process. Dyes Pigments 2004; 62(3):269-75. Link [DOI:10.1016/j.dyepig.2003.12.006]
25. Amin MM, Golbini Mofrad MM, Pourzamani H, Sebaradar SM, Ebrahim K. Treatment of industrial wastewater contaminated with recalcitrant metal working fluids by the photo-Fenton process as post-treatment for DAF. J Indus Eng Chem 2017;45(1):412-20. Link [DOI:10.1016/j.jiec.2016.10.010]
26. Height M, Pratsinis S, Mekasuwandumrong O, Praserthdam P. Ag-ZnO catalysts for UV-Photodegradation of Methylene Blue. Appl Catal B: Environ 2006;63(3-4):305-12. Link [DOI:10.1016/j.apcatb.2005.10.018]
27. Huang M, Xu C, Wu Z, Huang Y, Lin J, Wu J. Photocatalytic discolorization of Methyl Orange solution by Pt modified TiO2 loaded on natural zeolite. Dyes Pigments 2008;77(2):327-34. Link [DOI:10.1016/j.dyepig.2007.01.026]
28. Zhu C, Wang L, Kong L, Yang X, Wang L, Zheng S, Chen F, MaiZhi F, Zong H. Photocatalytic degradation of azo dyes by supported TiO2 + UV in aqueous solution. Chemosphere 2000;41(3):303 -9. Link [DOI:10.1016/S0045-6535(99)00487-7]
29. Torkaman M, Moradi R, Keyvani B. Photocatalytic degradation azo dye Direct Red 23 using carbon nanotubes particles by UV/H2O2 process in batch photoreactor. Revue Roumaine De Chimie 2016;61(10):763-72. Link
30. Sun JH, Sun SP, Wang GL, Qiao PL. Degradation of azo dye Amido Black10B in aqueous solution by Fenton oxidation process, Dyes Pigments 2007;74(3):647-52. Link [DOI:10.1016/j.dyepig.2006.04.006]
31. Tunc S, Gurkan T, Duman O. On-line spectrophotometric method for the determination of optimum operation parameters on the decolorization of Acid Red 66 and Direct Blue 71 from aqueous solution by Fenton process. Chem Eng J 2012;181(2): 431-42. Link [DOI:10.1016/j.cej.2011.11.109]
32. Saien J, Soleymani A. Degradation and mineralization of Direct Blue 71 in a circulating upflow reactor by UV/TiO2 process and employing a new method in kinetic study. J Hazard Mater 2007;144(1-2):506-12. Link [DOI:10.1016/j.jhazmat.2006.10.065]
Send email to the article author

Add your comments about this article
Your username or Email:


XML     Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Moradi R, Bodaghi A, Hosseini J, Ganjali A. Study Degradation of 4-(2-Pyridylazo)Resorcinol Dye in Circulating Fludized Bed Photo Reactor Using ZnO Nanoparticles. Archives of Hygiene Sciences 2019; 8 (1) :1-8
URL: http://jhygiene.muq.ac.ir/article-1-344-en.html

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 8, Issue 1 (Winter 2019) Back to browse issues page
Archives of Hygiene Sciences Archives of Hygiene Sciences
Persian site map - English site map - Created in 0.08 seconds with 29 queries by YEKTAWEB 4538