[Home ] [Archive]    
:: Volume 10, Issue 1 (Winter 2021) ::
Arch Hyg Sci 2021, 10(1): 30-48 Back to browse issues page
‎Application of Box-Behnken Design and Response Surface Methodology of Acid Red 18 Adsorption onto PAC‎ (Synthesized Carrot Waste) Coated with Fe3O4 Nanoparticles from Aquatic Solution: Kinetic and Isotherm Studies
Roya Moradi , Morteza Kashefialasl * , Reza Marandi , Esmael Salahi , Shahram Moradidehaqi
Associate Professor, Department of Environmental Pollution, Faculty of Marine Science and Technology, Islamic Azad University, North Tehran Branch, Iran
Abstract:   (98 Views)
Background & Aims of the Study: The dyes present in the effluent from the textile industry are among the most polluted and hazardous wastewater discharged, causing severe changes in water quality and the environment. The use of agricultural residues as inexpensive organic adsorbents is very suitable for removing industrial dyes from aquatic solutions, especially in developing countries. This study aimed to investigate the effectiveness of activated carbon synthesized from carrot waste as an inexpensive and available organic adsorbent in the removal of Acid Red 18 (AR18) dye.
Materials and Methods: In this study, response surface methodology (RSM) was discussed as an efficient method for the optimization of AR18 adsorption onto PAC‎ (obtained from waste carrot) coated with Fe3O4 nanoparticles. ANOVA analysis based on the Box-Behnken design-RSM was applied to investigate the correlation coefficient of PAC (Synthesized Carrot Waste). Adsorbent dose, initial dye concentration, and pH were optimized and evaluated using RSM with respect to contact time on adsorption of AR18. Moreover, X-ray diffraction, transmission electron microscopy, Brunauer–Emmett–Teller, Fourier-transform infrared, and field emission scanning electron microscopy techniques were used to study the adsorbent properties and characteristics of PAC‎. Isotherm data were modeled with both Langmuir and Freundlich isotherm.
Results: The results obtained from Langmuir isotherm showed the best fit to experimental data proposing homogeneous dispersion of adsorption sites. Moreover, the compatibility of the adsorbent was examined by fitting the adsorption data with a pseudo-second-order kinetic model. The results of ANOVA analysis showed a good fit between quadratic model predictions with experimental values, resulting in R2 of 0.997 for PAC. The results showed 99.7% of dye AR18 was removed after 80 min, pH at 3, and the adsorbent dose of 1.5 g.
Conclusion: It can be concluded that PAC‎ (Synthesized Carrot Waste) has great potential applications for the removal of AR18 dye from the textile industry. Large-scale applications of adsorbent and adsorbate, due to their recuperation and reusability characteristics, are proposed by observations and experimental results of this study.
Keywords: Adsorption, Isotherm, Kinetics, Ponceau 4R, Solutions, Synthetic activated carbon.
Full-Text [PDF 1523 kb]   (36 Downloads) |   |   Full-Text (HTML)  (23 Views)  
Type of Study: Original Article | Subject: Environmental Health
Received: 2020/09/20 | Accepted: 2020/11/7 | Published: 2021/01/19
1. 1. Wang, S. , Zhai, Y. Y. , Gao, Q. , Luo, W. J. , Xia, H. , and Zhou, C. G. Highly efficient removal of acid red 18 ‎from aqueous solution by magnetically retrievable chitosan/carbon nanotube: Batch study, isotherms, kinetics, ‎and thermodynamics, Journal of Chemical and Engineering Data. 2014; 59, 39-51. Link ‎ [DOI:10.1021/je400700c]
2. ‎2. Shokoohi R., Vatanpoor V., Zarrabi M ., Adsorption of Acid Red 18 (AR18) by activated carbon from poplar ‎wood-A kinetic and equilibrium study, E-Journal of Chemistry. 2010; 7(1): 65-72. Link ‎ [DOI:10.1155/2010/958073]
3. ‎3. Gomez V., Larrechi M.S, Callao M.P., Kinetic and adsorption study of acid dye removal using activated ‎carbon, ElsevierChemosphere. 2007; 69(7):1151-1158. Link [DOI:10.1016/j.chemosphere.2007.03.076]
4. ‎4. Shokri A, Karimi S. Treatment of Aqueous Solution Containing Acid red 14 using an Electro Peroxone ‎Process and a Box-Behnken Experimental Design. Arch Hyg Sci. 2020; 9 (1) :48-57. Link [DOI:10.29252/ArchHygSci.9.1.48]
5. ‎5. Thinakaran N., Panneerselvam P., Baskaralingam P., Elango D., Sivanesan S., Equilibrium and kinetic studies ‎on the removal of Acid Red 114 from aqueous solutions using activated carbons prepared from seed shells, ‎Journal of Hazardous Materials. 2008;158(1): 142-150. Link ‎ [DOI:10.1016/j.jhazmat.2008.01.043]
6. ‎6. Bouguettoucha A., Reffas A., Chebli D., Amrane A., Adsorption of the cationic dye Ethyl Violet on acid and ‎alkali-treated wild carob powder, a low-cost adsorbent derived from forest waste, Iran. J. Chem. Chem. ‎Eng.(IJCCE). 2017;36(81):87-96. Link
7. ‎7. Pereira M. F. R., Soares S. F., Órfão J. J. M., Figueiredo J. L., Adsorption of dyes on activated carbons: ‎Influence of surface chemical groups. 2011; 17(13):431-441. Link ‎
8. ‎8. Öztürk A., Malkoc E., Adsorptive potential of cationic Basic Yellow 2 (BY2) dye onto natural untreated clay ‎‎(NUC) from aqueous phase: mass transfer analysis kinetic and equilibrium profile, Applied Surface Science. ‎‎2014; 299(193):105-115. Link [DOI:10.1016/j.apsusc.2014.01.193]
9. ‎9. Wang, H., Fang, X.M., Sutar, P.P., Meng, J.S., Wang, J., Yu, X.L. and Xiao, H.W., 2020. Effects of vacuum-‎steam pulsed blanching on drying kinetics, colour, phytochemical contents, antioxidant capacity of carrot and ‎the mechanism of carrot quality changes revealed by texture, microstructure and ultrastructure. Food ‎Chemistry, 338, p.127799.Link [DOI:10.1016/j.foodchem.2020.127799]
10. ‎10. Mansoorian H.J., Jafari A.J., Reza Yari A., Hossein Mahvi A., Alizadeh M., Sahebian H., application of ‎acaciatortilis shuck as of lowcost adsorbent to removal of azo dyes reactive red 198 and blue 19 from aqueous ‎solution, Archives of Hygiene Sciences. 2014; 3(1):1-11. Link
11. ‎11. Goleij M., Fakhraee H., Response surface methodology optimization of cobalt (II) and lead (II) removal ‎from aqueous solution using MWCNT-Fe3O4 nanocomposite, Iran. J. Chem. Chem. Eng.(IJCCE). 2017; ‎‎36(5):129-141. Link
12. ‎12. Percot A., Viton C., Domard A., Optimization of chitin extraction from shrimp shells, ACS ‎Publications. 2003;4(1): 12-18. Link [DOI:10.1021/bm025602k]
13. ‎13. Islam M., Shah M., Rahman M.M., Islam Molla A., Shaikh A.A., Roy S.K., Preparation of ‎chitosan from shrimp shell and investigation of its properties, International Journal of Basic & Applied ‎Sciences IJBAS-IJENS. 2013; 11(1):77-80. Link
14. ‎14. Chiou, M. S. and Li, H. Y. Adsorption behavior of reactive dye in aqueous solution on chemical cross-linked ‎chitosan beads, Chemosphere. 2003; 50, 1095-1105. Link [DOI:10.1016/S0045-6535(02)00636-7]
15. ‎15. Shahsavani S., Dehghani M., Chemistry N. S., Removal of Direct Red 81 from aqueous solution using an ‎acidic soil containing iron (Case study of Lahijan soil), Iran. J. Chem. Chem. Eng.(IJCCE). 2019; 38(94):107-‎‎112. Link
16. ‎16. Kamranifar M., Naghizadeh A., Montmorillonite nanoparticles in removal of textile dyes from aqueous ‎solutions: study of kinetics and thermodynamics, Iran. J. Chem. Chem. Eng.(IJCCE). 2017; 36(86):127-137. ‎Link
17. ‎17. Soni S., Bajpai P. K., Mittal J., Arora C., Utilisation of cobalt doped Iron based MOF for enhanced removal ‎and recovery of methylene blue dye from waste water, Journal of Molecular Liquids. 2020; 314(20): 1-20. ‎Link ‎ [DOI:10.1016/j.molliq.2020.113642]
18. ‎18. Yu J.X., Zhu J., Feng L.Y., Cai X.L., Zhang Y.F., chi R.A., Removal of cationic dyes by modified waste ‎biosorbent under continuous model: Competitive adsorption and kinetics, Arabian Journal ofChemistry. 2015; ‎X 1-8. Link
19. ‎19. Farghali A., Bahgat M., El Rouby W.M.A. Khedr M.H., Preparation, decoration and characterization of ‎graphene sheets for methyl green adsorption, Journal of Alloys and Compounds. 2013; 555:193-200. Link ‎ [DOI:10.1016/j.jallcom.2012.11.190]
20. ‎20. Qi Y., Lu Y., Liu L., Qi X., Ding F., Li H., Huang X., Chen L., ShengHu H.,Retarding graphitization of soft ‎carbon precursor: From fusion-state to solid-state carbonization, Energy Storage Materials. 2019; 26:577-584. ‎Link [DOI:10.1016/j.ensm.2019.11.031]
21. ‎21. Fan J., Chen D., Li N., Xu Q., Li H., He J.,Lu J., Adsorption and biodegradation of dye in wastewater with ‎Fe3O4@ MIL-100 (Fe) core-shell bio-nanocomposites, Chemosphere. 2017; 191: 315-323. Link [DOI:10.1016/j.chemosphere.2017.10.042]
22. ‎22. Sivakami M., Gomathi T.,Venkatesan J., Jeong H.S., Kim S.K., Sudha P.N., Preparation and ‎characterization of nano chitosan for treatment wastewaters, Int J Biol Macromol. 2013; 57:204-212. Link [DOI:10.1016/j.ijbiomac.2013.03.005]
23. ‎23. Jiang C., Wang X., Qin D., Da W., Hou B., Hao C., Wu J., Construction of magnetic lignin-based adsorbent ‎and its adsorption properties for dyes, Journal of Hazardous Materials. 2019; 369:50-61. Link [DOI:10.1016/j.jhazmat.2019.02.021]
24. ‎24. Moradi R, Hosseini J. Removal of Acid Orange25 Diazo Dye in Water Solutions by Adsorption onto ‎Clinoptilolite Zeolite: Study Kinetic and Isotherm Model: Experimental Design and Optimization. Arch Hyg Sci. ‎‎2018; 7 (3) :139-149. Link [DOI:10.29252/ArchHygSci.7.3.139]
25. ‎25.Azizian S., Kinetic models of sorption: a theoretical analysis, Journal of Colloid and Interface Science. ‎‎2004; 276: 47-52. Link [DOI:10.1016/j.jcis.2004.03.048]
26. ‎26. Yang X., Duri B. A., Kinetic modeling of liquid-phase adsorption of reactive dyes on activated carbon, ‎Journal of Colloid and Interface Science. 2005; 287(1): 25-34. Link [DOI:10.1016/j.jcis.2005.01.093]
27. ‎27. Azizian S., Bashiri H., Adsorption kinetics at the solid/solution interface: Statistical rate theory at initial ‎times of adsorption and close to equilibrium, Langmuir. 2008; 24(20): 11669-11676. Link [DOI:10.1021/la802288p]
28. ‎28. Thinakaran N., Baskaralingam P., Pulikesi M., PanneerselvamP., Sivanesan S ., Removal of Acid Violet ‎‎17 from aqueous solutions by adsorption onto activated carbon prepared from sunflower seed hull, Journal of ‎Hazardous Materials. 2008; 151(2-3):316-22. Link [DOI:10.1016/j.jhazmat.2007.05.076]
29. ‎29. Kannan N., pigments MM.., Kinetics and mechanism of removal of methylene blue by adsorption on arious ‎carbons-a comparative study, Dyes and Pigments. 2001; 51: 25-40. Link [DOI:10.1016/S0143-7208(01)00056-0]
30. ‎30. Annadurai G., Juang R., Lee D.H., Use of cellulose-based wastes for adsorption of dyes from aqueous ‎solutions, Journal of Hazardous Materials. 2002;92(3): 263-274. Link [DOI:10.1016/S0304-3894(02)00017-1]
31. ‎31. Daneshvar E., Kousha M., Sohrabi M.S., Khataee A., Converti A., Biosorption of three acid dyes by the ‎brown macroalga Stoechospermum marginatum: isotherm, kinetic and thermodynamic studies, Chemical ‎Engineering Journal. 2012; 195-196 : 297-306. Link [DOI:10.1016/j.cej.2012.04.074]
32. ‎32. Langmuir I., "The constitution and fundamental properties of solids and liquids", Part I Solids J Am Chem ‎Soc. 2012; 38: 2221-2295.Link [DOI:10.1021/ja02268a002]
33. ‎33. Gandhi N., Sirisha D., Sekhar K.B.C., Adsorption of Fluoride ( F-) from Aqueous Solution by Using ‎Pineapple ( Ananas comosus ) Peel and Orange ( Citrus sinensis ) Peel Powders, International Journal of ‎Bioremediation & Biodegradation. 2016;4: 55-67. Link
34. ‎34. Khataee A. R., Zarei M., Moradkhannejhad L., Application of response surface methodology for ‎optimization of azo dye removal by oxalate catalyzed photoelectro-Fenton process using carbon nanotube-‎PTFE cathode, Desalination. 2010; 258: 112-119. Link [DOI:10.1016/j.desal.2010.03.028]
35. ‎35. BazrafshanE., Kord Mostafapour F., Rahdar S., Mahvi A.H., Equilibrium and thermodynamics studies for ‎decolorization of Reactive Black 5 (RB5) by adsorption onto MWCNTs, Desalination and Water Treatment. ‎‎2015; 54:2241-2251. Link [DOI:10.1080/19443994.2014.895778]
36. ‎36. Bazrafshan E., Rahdar S., Zazouli M.A., Balarak D., Kord Mostafapour F., Equilibrium and ‎thermodynamics studies for decolorization of reactive black 5 by adsorption onto acid modified banana leaf ‎ash, Iranian Journal of Health Sciences. 2015; 3:15-28. Link
37. ‎37. Hameed B.H., Ahmad A.A., Aziz N., Isotherms, kinetics and thermodynamics of acid dye adsorption on ‎activated palm ash, Chemical Engineering Journal. 2007; 133(1-3):195-203. Link [DOI:10.1016/j.cej.2007.01.032]
38. ‎38. Fil B., Karakaş Z., Boncukcuoğlu R., Yılmaz A., Removal of cationic dye (basic red 18) from aqueous ‎solution using natural Turkish clay, Global Nest Journal. 2013; 15(4):529-541. Link [DOI:10.30955/gnj.000944]
39. ‎39. Cheung W.H., Szeto Y., Mcay G., Intraparticle diffusion processes during acid dye adsorption onto ‎chitosan,Bioresource Technology. 2007; 98: 2897-2904. Link [DOI:10.1016/j.biortech.2006.09.045]
40. ‎40. Ghanizadeh G., Asgari GH.,Removal of methylene blue dye from synthetic wastewater with bone char, ‎Iranian Journal of Health and Environment. 2009; 2(2): 104-113. Link
41. ‎41. Doğan M., Alkan M., Türkyilmaz A., Ozdemir Y., Kinetics and mechanism of removal of methylene blue by ‎adsorption onto perlite, Journal of Hazardous Materials. 2004; 109(1-3):141-8. Link [DOI:10.1016/j.jhazmat.2004.03.003]
42. ‎42. Yazdani M., Arami M., Bahrami H., Textile dyes removal from single and binary systems using inorganic ‎adsorbent, Journal of color science and technalogy. 2012; 6(2);153 -164. Link
43. ‎43‎‌.‌‎ Gil A., Assis F., Albeni, S., Korili S.A.,Removal of dyes from wastewaters by adsorption on pillared clays, ‎Chemical Engineering Journal. 2011; 168(3) :1032-1040. Link [DOI:10.1016/j.cej.2011.01.078]
44. ‎44‎‌.‌‎ Kushwaha A., Gupta N., Chattopadhyaya M.C., Removal of cationic methylene blue and malachite green ‎dyes from aqueous solution by waste materials of Daucus carota, Journal of Saudi Chemical Society. 2014; ‎‎18: 200-207. Link [DOI:10.1016/j.jscs.2011.06.011]
45. ‎45‎‌ .‌Jaafari S., Shokouhi R., HOSSEIN Z., Taghavi M., Removal of Reactive Black 5 (RB5) dye from aqueous ‎solution by using of adsorption onto activated red mud: kinetic and equilibrium study, jundishapur journal of ‎health sciences . 2012; 4(1): 57-67. Link
46. ‎46‎‌.‌‎ Farahani M., Abdullah S., Hossein S.,Shojaeipour S., Kashisaz M., Adsorption-based cationic dyes using the ‎carbon active sugarcane bagasse, Procedia Environmental Sciences. 2011; 10( A): 203-208. Link [DOI:10.1016/j.proenv.2011.09.035]
47. ‎47‎‌.‌‎ Mary Ealias A,. Saravanakumar M.P., Facile synthesis and characterisation of AlNs using Protein Rich ‎Solution extracted from sewage sludge and its application for ultrasonic assisted dye adsorption: Isotherms, ‎kinetics, mechanism and RSM design. Journal of Environmental Management. 2018; 206: 215-227. Link [DOI:10.1016/j.jenvman.2017.10.032]
48. ‎48‎‌.‌‎ Ioannidou O., Zabaniotou A., Agricultural residues as precursors for activated carbon production-a review, ‎Renewable and Sustainable Energy Reviews. 2007; 11: 1966-2005. Link [DOI:10.1016/j.rser.2006.03.013]
Send email to the article author

Add your comments about this article
Your username or Email:


XML     Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Moradi R, Kashefialasl M, Marandi R, Salahi E, Moradidehaqi S. ‎Application of Box-Behnken Design and Response Surface Methodology of Acid Red 18 Adsorption onto PAC‎ (Synthesized Carrot Waste) Coated with Fe3O4 Nanoparticles from Aquatic Solution: Kinetic and Isotherm Studies. Arch Hyg Sci. 2021; 10 (1) :30-48
URL: http://jhygiene.muq.ac.ir/article-1-469-en.html

Volume 10, Issue 1 (Winter 2021) Back to browse issues page
Archives of Hygiene Sciences Archives of Hygiene Sciences
Persian site map - English site map - Created in 0.13 seconds with 29 queries by YEKTAWEB 4256