:: Volume 9, Issue 4 (Autumn 2020) ::
Arch Hyg Sci 2020, 9(4): 275-286 Back to browse issues page
Antibacterial, Antioxidant, and Anticancer Activities of Biosynthesized Selenium Nanoparticles Using Two Indigenous Halophilic Bacteria
Maryam Tabibi , Seyed Soheil Agaei * , Mohammad Ali Amoozegar , Razieh Nazari , Mohammad Reza Zolfaghari
Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
Abstract:   (575 Views)
Background & Aims of the Study: Selenium is an essential nutritional material used for the important functions of the human body. The issue of the production of selenium nanoparticles (SeNPs) was investigated in various fields, such as anticancer, antioxidant, and antibacterial activities.
Materials and Methods: In order to study antibacterial activity, the nutrient broth medium containing synthesized SeNPs in six different concentrations (i.e., 100, 50, 25, and 12.5 µM) was evaluated on six pathogenic bacteria. Then, the growth curves were drawn as an antibacterial assay in six pathogenic bacteria. In addition, the antioxidant effect was examined by the 2, 2-Diphenyl-1-picrylhydrazyl method. The stock solution of SeNPs was mixed with culture media in six different concentrations (i.e., 0.001, 0.01, 0.1, 1, 10, and 100 μM) and exposed on MCF-7 and HT-29 cell lines; therefore, the anticancer effects of SeNPs were assayed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method.
Results: According to the obtained results, the most and least significant antibacterial effects of synthesized SeNPs were observed for Staphylococcus aureus (98%) and Klebsiella pneumonia (51.55%), respectively. The highest concentration of biosynthesized SeNPs can achieve a better outcome regarding the antioxidant activity. The growth of MCF-7 and HT-29 cancer cell lines were inhibited by synthesized SeNPs in a concentration of 100 µM.
Conclusion: Consequently, the results of the present study showed that SeNPs synthesized from indigenous halophilic bacteria could display anticancer, antioxidant, and antibacterial activities. This progress can assist in the treatment of different diseases.
Keywords: Antibacterial agents, Anticancer, Antioxidants, Halophile, Nanoparticles, Selenium
Full-Text [PDF 990 kb]   (159 Downloads) |   |   Full-Text (HTML)  (228 Views)  
Type of Study: Original Article | Subject: Microbiology
Received: 2020/08/2 | Accepted: 2020/09/7 | Published: 2020/10/1
References
1. Khan I, Saeed K, Khan I. Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry. 2017.
2. Yim SH, Clish CB, Gladyshev VN. Selenium Deficiency Is Associated with Pro-longevity Mechanisms. Cell reports. 2019;27(9):2785-97. e3. [DOI:10.1016/j.celrep.2019.05.001]
3. Sakr TM, Korany M, Katti KV. Selenium nanomaterials in biomedicine-An overview of new opportunities in nanomedicine of selenium. Journal of Drug Delivery Science and Technology. 2018;46:223-33. [DOI:10.1016/j.jddst.2018.05.023]
4. Khurana A, Tekula S, Saifi MA, Venkatesh P, Godugu C. Therapeutic applications of selenium nanoparticles. Biomedicine & Pharmacotherapy. 2019;111:802-12. [DOI:10.1016/j.biopha.2018.12.146]
5. Skalickova S MV, Cihalova K, Horky P, Richtera L, Adam V. Perspective of selenium nanoparticles as a nutrition supplement. Nutrition. 2016. [DOI:10.1016/j.nut.2016.05.001]
6. Tran PA, Webster TJ. Selenium nanoparticles inhibit Staphylococcus aureus growth. International journal of nanomedicine. 2011;6:1553. [DOI:10.2147/IJN.S21729]
7. Keskinbora K, Jameel M. Nanotechnology applications and approaches in medicine: a review. J Nanosci Nanotechnol Res. 2018;2(2):6.
8. Moshed A, Mohammad A, Islam Sarkar MK, Khaleque M. The Application of Nanotechnology in Medical Sciences: New Horizon of Treatment. American Journal of Biomedical Sciences. 2017;9(1). [DOI:10.5099/aj170100001]
9. Hosnedlova B, Kepinska M, Skalickova S, Fernandez C, Ruttkay-Nedecky B, Peng Q, et al. Nano-selenium and its nanomedicine applications: a critical review. International journal of nanomedicine. 2018;13:2107. [DOI:10.2147/IJN.S157541]
10. Medina Cruz D, Mi G, Webster TJ. Synthesis and characterization of biogenic selenium nanoparticles with antimicrobial properties made by Staphylococcus aureus, methicillin‐resistant Staphylococcus aureus (MRSA), Escherichia coli, and Pseudomonas aeruginosa. Journal of Biomedical Materials Research Part A. 2018;106(5):1400-12. [DOI:10.1002/jbm.a.36347]
11. Amoozegar MA, Schumann P, Hajighasemi M, Ashengroph M, Razavi MR. Salinicoccus iranensis sp. nov., a novel moderate halophile. International journal of systematic and evolutionary microbiology. 2008;58(1):178-83. [DOI:10.1099/ijs.0.65221-0]
12. Tran P A OB-SN, C Reynolds E, Pantarat N, P Biswas D, O'Connor A J Low cytotoxic trace element selenium nanoparticles and their differential antimicrobial properties against S. aureus and E. coli. Nanotechnology. 2016;27:10. [DOI:10.1088/0957-4484/27/4/045101]
13. Huang X, Chen X, Chen Q, Yu Q, Sun D, Liu J. Investigation of functional selenium nanoparticles as potent antimicrobial agents against superbugs. Acta biomaterialia. 2016;30:397-407. [DOI:10.1016/j.actbio.2015.10.041]
14. Huang T, Holden JA, Heath DE, O'Brien-Simpson NM, O'Connor AJ. Engineering highly effective antimicrobial selenium nanoparticles through control of particle size. Nanoscale. 2019;11(31):14937-51. [DOI:10.1039/C9NR04424H]
15. Mates Ileana AI, Vasile Laslo, Vicaş Simona, Brocks Marcel, Luminita Fritea, Milea Claudia, Mohan Aurel, Cavalu Simona. Selenium nanoparticles: Production, characterization and possible applications in biomedicine and food science. UPB Scientific Bulletin, Series B: Chemistry and Materials Science. 2019;81:205-16.
16. Baskar G, Lalitha K, George GB. Synthesis, characterization and anticancer activity of selenium nanobiocomposite of l-asparaginase. Bulletin of Materials Science. 2019;42(1):4. [DOI:10.1007/s12034-018-1686-z]
17. Maiyo F, Singh M. Selenium nanoparticles: potential in cancer gene and drug delivery. Nanomedicine. 2017;12(9):1075-89. [DOI:10.2217/nnm-2017-0024]
18. Niki E. Assessment of antioxidant capacity in vitro and in vivo. Free Radical Biology and Medicine. 2010;49(4):503-15. [DOI:10.1016/j.freeradbiomed.2010.04.016]
19. Turło J, Gutkowska B, Herold F. Effect of selenium enrichment on antioxidant activities and chemical composition of Lentinula edodes (Berk.) Pegl. mycelial extracts. Food and chemical toxicology. 2010;48(4):1085-91. [DOI:10.1016/j.fct.2010.01.030]
20. Forootanfar H, Adeli-Sardou M, Nikkhoo M, Mehrabani M, Amir-Heidari B, Shahverdi AR, et al. Antioxidant and cytotoxic effect of biologically synthesized selenium nanoparticles in comparison to selenium dioxide. Journal of Trace Elements in Medicine and Biology. 2014;28(1):75-9. [DOI:10.1016/j.jtemb.2013.07.005]
21. Abolhasani H, Zarghi A, Abolhasani A, Hamzeh-Mivehroud M, Bargahi N, Notash B, et al. Design, Synthesis and in vitro Cytotoxicity Evaluation of New 3', 4'-bis (3, 4, 5-trisubstituted)-4'H-spiro [indene-2, 5'-isoxazol]-1 (3H)-one Derivatives as Promising Anticancer Agents. Letters in Drug Design & Discovery. 2014;11(10):1149-61. [DOI:10.2174/1570180811666140704172442]
22. Shubharani R, Mahesh M, Yogananda Murthy V. Biosynthesis and Characterization, Antioxidant and Antimicrobial Activities of Selenium Nanoparticles from Ethanol Extract of Bee Propolis. J Nanomed Nanotechnol. 2019;10(522):2. [DOI:10.4172/2157-7439.1000522]
23. Srivastava N, Mukhopadhyay M. Green synthesis and structural characterization of selenium nanoparticles and assessment of their antimicrobial property. Bioprocess and biosystems engineering. 2015;38(9):1723-30. [DOI:10.1007/s00449-015-1413-8]
24. Kiełczykowska M, Kocot J, Paździor M, Musik I. Selenium-a fascinating antioxidant of protective properties. Adv Clin Exp Med. 2018;27(2):245-55. [DOI:10.17219/acem/67222]
25. Zhao RZ, Jiang S, Zhang L, Yu ZB. Mitochondrial electron transport chain, ROS generation and uncoupling. International journal of molecular medicine. 2019;44(1):3-15. [DOI:10.3892/ijmm.2019.4188]
26. Zoidis E, Seremelis I, Kontopoulos N, Danezis GP. Selenium-dependent antioxidant enzymes: Actions and properties of selenoproteins. Antioxidants. 2018;7(5):66. [DOI:10.3390/antiox7050066]
27. Boroumand S, Safari M, Shaabani E, Shirzad M, Faridi-Majidi R. Selenium nanoparticles: synthesis, characterization and study of their cytotoxicity, antioxidant and antibacterial activity. Materials Research Express. 2019. [DOI:10.1088/2053-1591/ab2558]
28. Vyas J, Rana S. Antioxidant activity and biogenic synthesis of selenium nanoparticles using the leaf extract of Aloe vera. Int J Curr Pharm Res. 2017;9:147-52. [DOI:10.22159/ijcpr.2017v9i4.20981]
29. Wadhwani SA, Gorain M, Banerjee P, Shedbalkar UU, Singh R, Kundu GC, et al. Green synthesis of selenium nanoparticles using Acinetobacter sp. SW30: Optimization, characterization and its anticancer activity in breast cancer cells. International journal of nanomedicine. 2017;12:6841. [DOI:10.2147/IJN.S139212]
30. Ranjitha V, Ravishankar V. Extracellular synthesis of selenium nanoparticles from an actinomycetes streptomyces griseoruber and evaluation of its cytotoxicity on HT-29 cell line. Pharmaceutical nanotechnology. 2018;6(1):61-8. [DOI:10.2174/2211738505666171113141010]
31. Sanmartín C, Plano D, Sharma AK, Palop JA. Selenium compounds, apoptosis and other types of cell death: an overview for cancer therapy. International journal of molecular sciences. 2012;13(8):9649-72. [DOI:10.3390/ijms13089649]
32. Tan HW, Mo H-Y, Lau AT, Xu Y-M. Selenium species: Current status and potentials in cancer prevention and therapy. International journal of molecular sciences. 2019;20(1):75. [DOI:10.3390/ijms20010075]



XML     Print



Volume 9, Issue 4 (Autumn 2020) Back to browse issues page