:: Volume 9, Issue 2 (Spring 2020) ::
Arch Hyg Sci 2020, 9(2): 97-108 Back to browse issues page
Biosorption of Chromium and Nickel from Aqueous Solution by Chicken Feather
Eisa Solgi * , Ali Zamaninan
Department of Environment, Faculty of Natural Resources and Environment, Malayer University, Malayer, Iran
Abstract:   (868 Views)
Background & Aims of the Study: Heavy metals and its compounds are toxic pollutants that have priority in the studies due to their potential harm to human health.
Materials and Methods: This study evaluated the potential of a chicken feather for the removal of nickel and chromium from aqueous solutions. The chicken feather was prepared from aviculture for nickel and chromium removal from aqueous solutions. The effects of pH, contact time, adsorbent dosage, and initial metal concentration on Ni and Cr removal were also evaluated in this study. Freundlich and Langmuir isotherm models were used to characterize the biosorption of the mentioned metals onto the chicken feather.
Results: Based on the findings, the maximum removal of metals was found in a contact time of 3 h, 1 g/L of adsorbent, pH 5 (for Ni) and 6 (for Cr), and concentration of 1 mg/l of metals. According to the Langmuir isotherms, the maximum biosorption capacities (qm) of Cr and Ni were 22.3 and 119.05 mg/g, respectively.
Conclusion: The results showed that chicken feathers can absorb chromium and nickel at low concentrations. However, the ability and possibility of the use of the chicken feather are limited for the treatment of contaminated wastewater at high concentrations.
Keywords: Chromium, Nickel, Chickens, Feathers, Solutions, Adsorption
Full-Text [PDF 802 kb]   (186 Downloads) |   |   Full-Text (HTML)  (201 Views)  
Type of Study: Original Article | Subject: Environmental Health
Received: 2020/05/1 | Accepted: 2020/06/6 | Published: 2020/05/30
1. 1. Peavy HS, Rowe DR, Tchobanoglous G. Environmental Engineering, McGraw-Hill International Ed., 1985.
2. Li Q, Zhai J, Zhang W, Wang M, Zhou J, Kinetic Studies of Adsorption of Pb(II),Cr(II)and Cu(II) from Aqueous Solution by Sawdust and Modified Peanut Husk. J. Hazard. Mater. 2007; 141:163-167. [DOI:10.1016/j.jhazmat.2006.06.109]
3. Kietlinska A. Engineered wetlands and reactive bed filters for treatment of landfill leachate. Bsc. Thesis, Royal Institute of Technology. Stockholm. 2004.
4. Mohammad Pouran HR, Fotovat A, Haghnia GH, Halajnia A, Chamsaz M. The effect of leather processing industries waste water on chromium and its fractions in soil. Journal of Water and Soil. 2009; 23 ( 2):10-19
5. Neghizadeh S, Pourkhabaz A. The accumulation of heavy metals, cadmium and nickel in Platycephalus indicus in Hara wetland. J. Environmental .Science and Engineering. 2013; 1:33-43.
6. Ward ML, Bitton G, Townsend T. Heavy metal binding capacity (HMBC) of municipal solid waste landfill leachates. Chemosphere 2005;60: 206-15. [DOI:10.1016/j.chemosphere.2004.12.054]
7. Mico C, Recatal L, Peris M, Sanchez J. Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis. Chemosphere 2006;65: 863-72. [DOI:10.1016/j.chemosphere.2006.03.016]
8. Montazer-Rahmati MM, Rabbani P, Abdolali A. Kinetics and equilibrium studies on biosorption of cadmium, lead, and nickel ions from aqueous solutions by intact and chemically modified brown algae. J. Hazard Mater 2011;185: 401-7. [DOI:10.1016/j.jhazmat.2010.09.047]
9. Suna Erse A, Fazal MA, Onay TT. Determination of solid waste sorption capacity for selected heavy metals in landfills. J. Hazard Mater 2005;121: 223-32. [DOI:10.1016/j.jhazmat.2005.02.011]
10. Cincotti A, Lai N , Orrù R, Cao G. Sardinian natural clinoptilolites for heavy metals and ammonium removal: experimental and modeling. Chem. Eng. J 2001; 84: 275-82. [DOI:10.1016/S1385-8947(00)00286-2]
11. Upendra, K, Bandyopadhyay M. Sorption of cadmium from aqueous solution using pretreated rice husk. Bioresour Technol 2006;97: 104-109. [DOI:10.1016/j.biortech.2005.02.027]
12. Mohan S, Gandhimathi R. Removal of heavy metal ions from municipal solid waste leachate using coal fly ash as an adsorbent. J. Hazard Mater 2009; 169: 351-9. [DOI:10.1016/j.jhazmat.2009.03.104]
13. Kadiverlu K, Thamaraiselvi K, Namasivayam C. Removal of heavy metals from industrial wastewaters by adsorption onto activated carbon prepared from an agricultural solid waste, Bioresour Technol 2001;76: 63-65. [DOI:10.1016/S0960-8524(00)00072-9]
14. Gadd GM. Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. J Chem Technol Biot 2009; 84(1):13 - 28. [DOI:10.1002/jctb.1999]
15. WHO. Lead in Wastewater, Background Document for Development of WHO, Guidelines for Waste-Water Quality. Geneva. 2005. World Health Organization.(WHO/SDE/WSH/05.08/55).
16. Golkhah S, Zavvar Mousavi H, Shirkhanloo H, KhalighA. Removal of Pb(II) and Cu(II) Ions from Aqueous Solutions by Cadmium Sulfide Nanoparticles. J. Nanosci Nanotechnol 2017; 13: 105-117.
17. Ghasemi S, Mafi Gholami R, Yazdanian M . Biosorption of Heavy Metal From Cadmium Rich Aqueous Solutions by Tea Waste as a Low Cost Bio-Adsorbent. Jundishapur. J Health Sci 2017; 9: 37301. [DOI:10.17795/jjhs-37301]
18. Witek-Krowiak A, Szafran RG, Modelski S. Biosorption of heavy metals from aqueous solutions onto peanut shell as a low-cost biosorbent. Desalination 2011; 265 :126-134. [DOI:10.1016/j.desal.2010.07.042]
19. Hegazi Hala A. Removal of heavy metals from wastewater using agricultural and industrial wastes as adsorbents. HBRC Journal 2013; 9: 276 -282. [DOI:10.1016/j.hbrcj.2013.08.004]
20. Wongsasuluk P, Chotpantarat S, Siriwong W. Heavy metal contamination and human health risk assessment in drinking water from shallow groundwater wells in an agricultural area in Ubon Ratchathani province, Thailand. Environ Geochem Health 2014; 36: 169-82. [DOI:10.1007/s10653-013-9537-8]
21. Shukla A, Zhang YH, Shukla SS. et al. The role of sawdust in removal of unwanted materials from water. J. Hazard Mater 2002;95: 137-152. [DOI:10.1016/S0304-3894(02)00089-4]
22. Asrari E, Tavallali H, Hagshenas M. Removal of Zn(II) and Pb(II) ions Using Rice Husk in Food Industrial Wastewater. J. Appl. Sci. Environ. Manage 2010; 14: 159-162. [DOI:10.4314/jasem.v14i4.63306]
23. Daraei H, Manshouri M, Yazdanbakhsh A. Removal of phenol from aqueous solutions using ostrich feather ash. Journal of Mazandaran University of Medical Sciences 2010; 20: 81-87.
24. Okati N. Studying the Removal Process of Heavy Metals (Ni and Zn) from Aqueous Solution Using Orange Peel. J Environ. Sci. Technol 2016; 90 ( 2): 275-282 (In Persian).
25. Langmuir I. The constitution and fundamental properties of solids and liquids. part I. solids. J Am Chem Soci 1916; 38: 2221-95. [DOI:10.1021/ja02268a002]
26. Freundlich HM. Over the adsorption in solution. J Phys Chem 1906;57: 1100-7.
27. Sundaram CS, Viswanathan N, Meenakshi S. Defluoridation chemistry of synthetic hydroxylapatite at nano scale: Equilibriumand Kinetic studies. J Hazard Mater 2008;155: 206-15. [DOI:10.1016/j.jhazmat.2007.11.048]
28. Zhang Y, William Franken Berger T. Factors affecting removal of selenate in agricultural drainage water utilizing rice straw. Sci Total Environ 2003; 305 : 207-216. [DOI:10.1016/S0048-9697(02)00479-5]
29. Bahadir T, Bakang G, Altas L, Buyukgungor H. The investigation of lead removal by sorption: an application at storage battery industry wastewater. Enzyme Microb Technol 2007; 41: 98-102. [DOI:10.1016/j.enzmictec.2006.12.007]
30. Doyorum A, Celik A. Pb(II) and Cd(II) removal from aqueous solutions by olive cake. J. Hazard Mater 2006;138: 22-28. [DOI:10.1016/j.jhazmat.2006.03.071]
31. 31 Din MI, Mirza ML, Sadia Ata, Athar M, Mohsin IU. Thermodynamics of Biosorption for Removal of Co(II) Ions byan Efficient and Ecofriendly Biosorbent (Saccharum bengalense):Kinetics and Isotherm Modeling. J Chem Article ID 528-542.
32. Günay K, Arslankaya E, Tosun I. Lead removal from aqueous solution by natural and pretreated clinoptilolite: Adsorption equilibrium and kinetics. J Hazard Mater 2007;146: 362-371. [DOI:10.1016/j.jhazmat.2006.12.034]
33. Singh S, Ma Q, Hendry MJ. Characterization of aqueous lead removal by phosphatic clay: Equilibrium and kinetic studies. J Hazard Mater 2006;136: 654-662. [DOI:10.1016/j.jhazmat.2005.12.047]
34. Olgun A, Atar N. Removal of copper and cobalt from aqueous solution onto waste containing boron impurity. Chem Eng 2011;167: 140-7 [DOI:10.1016/j.cej.2010.12.012]
35. Miretzky P , Munoz C, Carrillo-Chavez A. Fluoride removel from aqueous solution by Capretreated macrophyte biomass. Environ. Chem2008;5:68-72 [DOI:10.1071/EN07078]
36. Ahmadpour A, Tahmasbi M, Bastami TR, et al. Rapid removal of cobalt ion from aqueous solutions by almond green hull. J Hazard Mater 2009;166: 925-30. [DOI:10.1016/j.jhazmat.2008.11.103]
37. Al-Shahrani, SS. Treatment of wastewater contaminated with cobalt using Saudi activated bentonite. Alex Eng J 2014,53: 205-11 [DOI:10.1016/j.aej.2013.10.006]
38. Abasi CY, Igwe JC, Abia AA . Adsorption of lead II and Cadmium II ions by unmodified Raphia Palm (RaphiaHookeri) fruit endocarp. Environ. Res 2011; 5:104-11 [DOI:10.3923/erj.2011.104.113]
39. Momčilović M, Purenović M, Bojić A. Removal of lead(II) ions from aqueous solutions by adsorption onto pine cone activated carbon. Desalination 2011; 27: 653-59 [DOI:10.1016/j.desal.2011.03.013]
40. AjayKumar AV, Darrwish NA, Hilal N. Study of various parameters in the biosorption of heavy metals on activated sludge. World Appl. Sci 2009;5: 32-40

XML     Print

Volume 9, Issue 2 (Spring 2020) Back to browse issues page