Evaluation of Heat Stress in Dry Cleaner Units: A Case Study in Qom, Iran

Javad Malakouti, Alireza Koohpaei, Shahram Arsang Jang, Fatemeh Dardmand, Reyhaneh Shaterian, Alireza Mashkoori

Department of Occupational Health Engineering, School of Health, Tehran University of Medical Sciences, Tehran, Iran.
Department of Occupational Health Engineering, School of Health, Research Center for Work Health, Qom University of Medical Sciences, Qom, Iran.
Department of Epidemiology and Biostatistics, School of Health, Qom University of Medical Sciences, Qom, Iran.
Department of Occupational Health Engineering, School of Health, Qom University of Medical Sciences, Qom, Iran.

*Correspondence should be addressed to Mr. Alireza Mashkoori, Email: mashkoori1@yahoo.com

Keywords: Heat stress, WBGT, Workers, Occupational exposure, Iran.

Background

Working in warm environments causes the heat stress in workers and besides reducing the ability can lead to various diseases (1). The ability of working and activity in a high temperature directly depends on the amount of the heat stress (2). The most important implications derived from working in warm environments are heat exhaustion, heat cramp, dehydration of body, heat rash, reduction of sweating and heatstroke (3). Heat also is considered as a risk factor in cardiovascular diseases; also it can be an effective factor in work related accidents (1). However, there is heat stress in some workplaces; industries like textile, casting, iron melting and jobs such as bakery and dry cleaner units related to these...
places. So far, various studies have been done which were related to the evaluation of the heat stress in different industries and jobs around the world and Iran; industries like construction, steel, glasswork, Aluminum, painting and kitchens are the examples of them (1,4-10). Based on the review of literature, it was clear that a few studies have been done about the heat stress evaluation in dry cleaner units, and the only relative research was studied about the heat stress evaluation in dry cleaner, in which three dry cleaner units were evaluated by WBGT index in Malaysia. According to the results, it revealed that, the heat stress in 33% of units was higher than recommended standard limits (10).

The WBGT index has been used in this study to evaluate the heat conditions. The WBGT index was introduced by Yaglou and Minard at first(1957), for the study of the environmental heat conditions and the probability of its dangers during the navy drillings on American Army’s desert operations (3,11). So far, various studies recommended, using WBGT (8,9,12-14). This index was also selected by the American Conference of Governmental Industrial Hygienists (ACGIH), as an index in studying the rate of workers who faced with the heat at workplaces (10). The National Institute for Occupational Safety and Health (NIOSH), also the International Standardization Organization (ISO) have recommended this index to evaluate the heat conditions (10,15,16).

Qom province, Iran, was selected for this research. The climate of it, in the classification of country’s climate is considered as a semi-desert one. Since it is located in the center of Iran, between 34 degree orbit and 15 minutes, to 35 degree and 15 minutes of southern width than equator, and 50 degree and 30 minutes to 51 degrees and 30 minutes of northern length than Greenwich (Fig.1), it seems that many workers in dry cleaner units are exposed to various heat sources; also in hot summers, they are exposed to the high heat stress.

Aims of the study:

Hence, considering the lack of information about heat stress evaluation in dry cleaner units of Qom province of Iran, this study was designed to evaluate the heat stress among workers of dry cleaner units in Qom province, Iran.

Materials & Methods

In this cross sectional study which have been done in Jul-Aug 2011, according to the information of Qom dry cleaners’ trade union of Iran, 113 units were active during the study and it was done in all units. Considering the clarification of the pilot study, it revealed that, the place involved highly in heat exposure during a day in dry cleaner units, near the iron systems. As a result, it was selected as a place of measurements. According to the ISO 7243, this study was done during the warmest days of the year, between 11 to 13.30 o’clock (16). The calibrated WBGT meter which is made by Casella Company was used to evaluate the heat stress in this study, according to NIOSH standard and equipped with the exact determination tools of natural wet bulb, dry and globe temperatures (17). This device has been used with different studies so far (8,17). The WBGT index (in an indoor working place) is calculated in accordance with the following equation:
The obtained values were recorded in designed sheet based on the individual’s adaptation and type of the work, and entered into SPSS 16, to carry out data analysis. The T-test was used to analyze and compare the results with standard, the independent T-tests and one-sided variance analysis used for comparison between groups, the chi-square tests used for comparing the heat stress ratio among individuals, and the procedure of the variance of analysis and LSD test were used to compare the total average WBGT among dry cleaner units.

Results

The average areas of dry cleaner units calculated 17.23±2.1 m². All dry cleaner units staffs worked continuously more than a month. As before mentioned, according to the job analysis of individuals with a standing posture...
and physically full-active, in accordance with ISO 8996, the workers have been categorized in group 2 (234<M<360 w/1.8m²) by calorie consumption classification. The average of WBGT index in dry cleaner units was determined 28.98±1.64°C. The obtained results of this study indicate that the WBGT index in 66.4% of units are higher than

28°C; therefore, 33.6% are smaller or equals to the standard. Data related to measuring parameters such as relative humidity, dry temperature, natural wet bulb temperature, globe temperature and also working times were given in details in Table 2.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Average</th>
<th>Max</th>
<th>Min</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours in a day</td>
<td>10</td>
<td>15</td>
<td>4</td>
<td>2.27</td>
</tr>
<tr>
<td>Ironing average hours in one day</td>
<td>6.98</td>
<td>14</td>
<td>2</td>
<td>2.31</td>
</tr>
<tr>
<td>Relative humidity (percent)</td>
<td>42.86</td>
<td>62.1</td>
<td>26.7</td>
<td>6.39</td>
</tr>
<tr>
<td>Dry temperature (°C)</td>
<td>35.73</td>
<td>40.2</td>
<td>30.5</td>
<td>2.21</td>
</tr>
<tr>
<td>Wet bulb temperature (°C)</td>
<td>25.56</td>
<td>29.7</td>
<td>22.1</td>
<td>1.61</td>
</tr>
<tr>
<td>Globe temperature (°C)</td>
<td>36.72</td>
<td>41.7</td>
<td>32</td>
<td>2.46</td>
</tr>
<tr>
<td>WBGT Index</td>
<td>28.98</td>
<td>32.2</td>
<td>25.2</td>
<td>1.64</td>
</tr>
</tbody>
</table>

Based on the results of T-test, we observed a significant difference between the heat stress average of Qom dry cleaner units and standard rate (28°C) statistically (P<0.0001). The results of the analysis showed that there was a significant difference between the average of WBGT index in units above 10 m² area than those which were in lower areas statistically (P<0.05).

Discussion

Based on the results of this study, the average of WBGT index in dry cleaner units was determined 28.98±1.64°C. According to the WBGT index limits of ISO 7243, there was a significant difference between the average heat stress of Qom dry cleaner units and standard rate statistically (P<0.0001). Also, this study showed that 66.4% of dry cleaner units in this study had improper heat stress situations. The reason for higher WBGT index in these places can be investigated in working environments of dry cleaner units like boiler systems (insulation and distance to operator), the confined space, and the kind of cooling system and also the weather conditions of Qom province, Iran. In a similar research, Jalil et al, carried out on three units of dry cleaners in Malaysia, found that in one of the three units of research, the heat stress (about 33%) was higher than recommended standard limits (10).

Because the main heat distribution source of these shops was related to the boiler systems, thus the first and main step in heat engineering control in workplaces was to eliminate or control of the heat production source. The isolation approach, reduction of emission, insulation, radiation shield, local exhaust ventilation or combinational can be used (3,4). Based on this fact that the average radiant temperature measured in those units was 36.72°C, it seems that using suitable heat insulations and radiation shield made of bright aluminum material or polished tin with high radiation reaction can have an effective role to control the heat radiation in dry cleaner units (20).

Also, the results of the analysis showed that there was a significant difference between the average of WBGT index in units above 10m² than those with lower areas statistically (P<0.05) which is a reason for higher heat stress in dry cleaner units with small physical areas. These results are in accordance with the results of other studies based on the introduction of room dimensions as the most
important factor in heat stress in dry cleaner units, especially in ironing task (18).

Application of improper cooling systems is an example of other reasons for heat stress in dry cleaner units. The water coolers are used in some units due to the economic purposes. The appearance of water vapor resulted in ironing and air moist by water coolers in some units, leads to feel more heat in workers. The technical and engineering controls can be done in different ways such as heat source control, separating the ironing task from other activities, local cooling in work station, general ventilation, fans and humidity control (3). It is recommended that gas coolers be used in those areas; otherwise, using proper ventilations is the second choice (10). Also, similar to other jobs such as bakery (21) and steel industries, (22) selection of administrative controls like doing ironing tasks before noon, also resting in cool areas and drinking with suitable temperature can be effective to reduce the severe results of these stress (3,10).

Among the limitations of this research, the shortage of similar studies can be pointed to compare the results. At the end, it is recommended that the evaluation of heat effects on workers in dry cleaner units to be considered in next researches.

Conclusion

Among all results of this study, it can be understood that the heat condition in some dry cleaner units of Qom province, Iran, is higher than recommended standard limits. Considering the high wet bulb and globe temperatures in dry cleaner units, the most important action to heat control, besides recommendation for using of areas with large dimensions, selection of technical and engineering controls such cooling systems improvement in units, use of shields and insulations in boiler systems can be mentioned.

Acknowledgements

The researchers acknowledge all the workers and employees of trade union of dry cleaner units of Qom province thanks to cooperation and assistance in conducting this research.

Conflict of Interest: The authors declared no conflict of interest.

References