Microbial Contamination of Raw Vegetables in Ahvaz, Iran during 2014-2015

Abdol Kazem Neisi a, Mohammad Javad Mohammadi b,c, Ahmad Reza Yari d, Mehdi Vosoughi c, Majid Farhadi c, Soghra Badri c, Monavar Daneshpajoh c

aEnvironmental Technologies Research Center, Department of Environmental Health Engineering, School of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
bAbadan School of Medical Sciences, Abadan, Iran.
cStudent Research Committee, Environmental Technologies Research Center, Department of Environmental Health Engineering, School of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
dResearch Center for Environmental Pollutants, Qom University of Medical Sciences, Qom, Iran.

© Correspondence should be addressed to Mr. Mehdi Vosoughi. Email: Mvn_20@yahoo.com

Background

Vegetables are useful plants which have a key role in providing food nutrients such as vitamins, minerals, proteins and fibers. According to vegetable daily frequently consumption may prevents different diseases and it has a special value in Iranian nutritional culture (1). Although these vegetables may spread parasitic and bacterial infection (2,3). Vegetables, especially those which are consumed rawly, are the most important factors of parasite transmission to human body (4). The most frequent globally illnesses which can be through water and Soil transmitted to nutritional foods such as Vegetables are parasitic infections (5). Struggling with contagious diseases through water, foods requires understanding the microorganism bio-

Archives of Hygiene Sciences
Volume 5, Number 3, Summer 2016
© 2016 Publisher: Research Center for Environmental Pollutants, Qom University of Medical Sciences. All rights reserved.
Therefore, providing a considerable quantity of essential vitamins and minerals for the body, it threatens people's health to parasitic infections in unsuitable washing. The number of parasitic infections cases in Iran are considerable. Therefore, identifying parasitic inflections sources and its contagion and preventing their transmission are specific hygienic priorities (7). The most important of its transmission route is soil, Water, foods and vegetables. Different ways contaminated Vegetables with parasites and other microorganisms consist of:
1. Using human fertilizer in agriculture (which can lead to Giardia, Amoeba, Cryptosporidium, Isospora, Toxoplasma, Hymnolepis, Teania, Hydatid cyst, Terishoris, Terikostreonjelios, Ascaris, hookworm and Strongyloides).
2. Using animal fertilizer, which is contaminated with common zoonosis parasites.
3. Using sewages for farm irrigation.
4. Vegetables pollutions at production, collection, transporting and preparing stages for sale.
5. Traffic of infected animals such as dogs, cats, and wild carnivorous in farm fields (Toxoplasma, Hydatid cyst) (8-10).

There are several researches on raw vegetables as a factor in transmission of contagious diseases. Salmonella &E. coli can be isolated from raw vegetables. These bacteria can contaminates vegetables in plantation, cultivation, irrigation, maintaining, washing and distribution stages. Eating raw infected vegetables are important for human health. Because, possibility of microbial contamination is high from farm fields to consumption (11). Previous studies shown that vegetable parasitic infections is about 20% in Kermanshah, 68.3% in Arak, 21% in Jiroft, 55.9% in Tehran's countryside, 41.3% in Tehran, 29.6% in Kerm, 53.62% in Sabzvar, %8 in Shahrood and 13.76% in Esfahan (12,13). Parasitic diseases as the result of raw vegetable consumption have been studied in developing and development countries. In a study conducted in northern Nigeria, parasitic infection from vegetables was varied in different regions from 3.5% to 68.8% and Ascaris ova was reported 0.5% (14). In another study in Saudi Arabia, Ascaris infection was reported 16% (15) that arised from unsuitable washed vegetable (16). Parasitic diseases cause digestive disorders such as diarrhea, stomachache, losing weight, appetite, nausea and vomiting, anemia, and brain and mental problems (17). Human beings are usually inflected through eating fetus ova which are reached in infection stage.

Many researchers have investigated vegetables parasitic and microbial contamination in different regions in Iran (2,18-26). Ahvaz County with approximately more than 1 million populations is located in western south of Iran. Its temperature is usually high and about 50 degrees salacious in warm seasons (19,20). The temperature rarely reaches to 10 degrees salacious in winter (19,20). The annual rain precipitation rate is about 25 milliliter. The highest rain rate is about 5 millimeters Azar (November) and Dey (December) months. Humidity is relatively low, about 20% -30%. Since pollution control and infection prevention programs are very important for executing such plans, identification of transmission routes can be effective and helpful.

Aims of the study:
The purpose of this study was to assess to determine whether vegetables are one of transmission routes or not in Ahvaz, Iran during 2014-2015. According to high consumption of vegetables and its sale in distribution centers, we attempted to investigate microbial and parasitic contamination.

Materials & Methods
3.1. Methods
This study was a cross sectional study. Samples collected based on cultivation farmlands areas. 20 vegetable samples collected from all farmland areas as resources in Khuzestan province (2014-2015), including Shahrake Bargh, Pol 5 (Bridge No. 5) and Tasfieh in Ahvaz City and Hamidieh, Koot Abdullah, Ramhormoz and Shoushtar cities. Vegetables were spearmint, basil, pansy, leek, Chicory, two types of radish, and two types of fumitory. One Kilogram of vegetables was collected for each sample (totally 20 kg). Vegetable samples were collected from grosser market which provided from all farmlands around Ahvaz (Khuzestan province). Vegetables weight was 1 kg and those were washed by 3 litter tap water. After being transferred to the lab, the collected vegetables were washed with a little detergent (2 drops per liter) to prevent acceleration transmission of parasite ova. We used jam dishwashing fluid (ingredient for used: Alkylbenzenesulfonic acids, Diethanolamide, Cocamidediethanolamine, Isothiazolinone, distilled water). Then the liquid for their washing was maintained in special containers in the Microbial lab of the health college for 24 hours for the reason of parasite ova sedimentation. For testing Coliform bacteria and Fecal Coliforms were separated from the water and 0.01 and 0.001 substances were made with the vegetables and the experiment was done on the Lactose broth culture setting. After 24 hours the surface liquid was poured in the pails and the sediment was divided in centrifugal tubes and was centrifuged (2000 rpm) for 15 minutes. The flouting, sedimentation and direct methods were used for investigating parasitic pollution. We calculated the Coliform in washed water. A microscope (Luminous) was used for identifying and counting the parasite ova in the samples. For investigating the total Coliforms and the fecal Coliforms 9-tube method was used based on the WHO method for parasite examination and standard method for Coliform examination (27, 28). Results of Coliforms are reported as most probable number (MPN/100ml). Bailenger method (28) was used for studying the parasite ova which is conducted through Ether Buffer stock, zinc sulfate and centrifuge system and its calculation is based on N= AX/PV formula.. The microbial tests were done in slinked water of vegetables washing process.

Results
According to the Figure 1, the largest amount of Total Coliform and Fecal Coliform in washed water of the vegetables were observed in Kott Abdullah. In water of washed samples with water and detergent it has the highest pollution, which the number of total Coliforms was 25893319.52 MPN/100ml and number of Fecal Coliforms was 15054572.83 MPN/100ml. The second most polluted area with Fecal Coliforms was the Pol 5. In terms of Ascaris ova parasite, Hamidieh and Shaiban had more Ascarisova Parasite ova than other regions.

![Figure 1) Fecal Coliform and Total Coliform in the washed samples with water only, MPN/100ml](image-url)

As indicated in figure 2 maximum total and fecal Coliform was in kottabdollah cultivation area and then Sheiban area. Minimum total and fecal Coliforms was in Shushtar cultivation area.
In table number 1 various parasite ova observed in washed water with water only and washed water with water and detergent.

![Figure 2](image-url)
Figure 2 Fecal Coliform and Total Coliform in the washed samples with water and detergent, MPN/100ml.

<table>
<thead>
<tr>
<th>Site</th>
<th>Ascaris</th>
<th>Diphyllobothriumlatum</th>
<th>Ovumite</th>
<th>Animal.nematode</th>
<th>Hymenolepis</th>
<th>Hookworm</th>
<th>Not seen</th>
<th>Giardia</th>
<th>Sanitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hamidieh</td>
<td>43.3</td>
<td>0</td>
<td>0</td>
<td>173.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Water only</td>
</tr>
<tr>
<td>Pol-5</td>
<td>0</td>
<td>0</td>
<td>133.33</td>
<td>26.6</td>
<td>0</td>
<td>0</td>
<td>13.3</td>
<td>0</td>
<td>Water only</td>
</tr>
<tr>
<td>Shahrak.Bargh</td>
<td>0</td>
<td>26.66</td>
<td>280</td>
<td>13.33</td>
<td>40</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Water only</td>
</tr>
<tr>
<td>Ramhormoz</td>
<td>0</td>
<td>0</td>
<td>266.66</td>
<td>306.66</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Water only</td>
</tr>
<tr>
<td>Kottabdollah</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>13.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Water only</td>
</tr>
<tr>
<td>Shooshtar</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Water only</td>
</tr>
<tr>
<td>Shaiban</td>
<td>36.76</td>
<td>24.44</td>
<td>134.44</td>
<td>0</td>
<td>12.22</td>
<td>0</td>
<td>0</td>
<td>12.22</td>
<td>Water only</td>
</tr>
<tr>
<td>Tasfieh</td>
<td>0</td>
<td>26.66</td>
<td>0</td>
<td>160</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Water only</td>
</tr>
<tr>
<td>Hamidieh</td>
<td>14.66</td>
<td>0</td>
<td>0</td>
<td>69.66</td>
<td>3.66</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Water & detergent</td>
</tr>
<tr>
<td>Pol-5</td>
<td>0</td>
<td>0</td>
<td>92</td>
<td>24</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Water & detergent</td>
</tr>
<tr>
<td>Shahrak.Bargh</td>
<td>0</td>
<td>24</td>
<td>328</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Water & detergent</td>
</tr>
<tr>
<td>Ramhormoz</td>
<td>0</td>
<td>0</td>
<td>144</td>
<td>168</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Water & detergent</td>
</tr>
<tr>
<td>Kottabdollah</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Water & detergent</td>
</tr>
<tr>
<td>Shooshtar</td>
<td>0</td>
<td>0</td>
<td>6.66</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Water & detergent</td>
</tr>
<tr>
<td>Shaiban</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6.66</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Water & detergent</td>
</tr>
<tr>
<td>Tasfieh</td>
<td>0</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>Water & detergent</td>
</tr>
</tbody>
</table>
• Microbial Contamination of Raw Vegetables in Ahvaz...

Table 2) Fecal Coliform observed in washed water with water only and washed water with water and detergent.

<table>
<thead>
<tr>
<th>Site</th>
<th>FC</th>
<th>Sanitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hamidieh</td>
<td>95</td>
<td>Water only</td>
</tr>
<tr>
<td>Pol-5</td>
<td>14.8221</td>
<td>Water only</td>
</tr>
<tr>
<td>Shahrak.bargh</td>
<td>0.73394</td>
<td>Water only</td>
</tr>
<tr>
<td>Ramhormoz</td>
<td>50</td>
<td>Water only</td>
</tr>
<tr>
<td>Kott.a</td>
<td>1400</td>
<td>Water only</td>
</tr>
<tr>
<td>Shooshtar</td>
<td>4.1</td>
<td>Water only</td>
</tr>
<tr>
<td>Shaiban</td>
<td>94.9367</td>
<td>Water only</td>
</tr>
<tr>
<td>Tasfieh</td>
<td>0</td>
<td>Water only</td>
</tr>
<tr>
<td>Hamidieh</td>
<td>32.7332</td>
<td>Water & detergent</td>
</tr>
<tr>
<td>Pol-5</td>
<td>75.9878</td>
<td>Water & detergent</td>
</tr>
<tr>
<td>Shahrak.bargh</td>
<td>4.5714</td>
<td>Water & detergent</td>
</tr>
<tr>
<td>Ramhormoz</td>
<td>2.5893</td>
<td>Water & detergent</td>
</tr>
<tr>
<td>Kott.a</td>
<td>15000</td>
<td>Water & detergent</td>
</tr>
<tr>
<td>Shooshtar</td>
<td>4.5714</td>
<td>Water & detergent</td>
</tr>
<tr>
<td>Shaiban</td>
<td>28.6259</td>
<td>Water & detergent</td>
</tr>
<tr>
<td>Tasfieh</td>
<td>0</td>
<td>Water & detergent</td>
</tr>
</tbody>
</table>

Discussion

Maximum of Total Coliform and Fecal Coliforms were found in Kouttabdollah vegetables. This indicates that discharging Ahvaz sewage to Karoonriver cause water pollution; this region is located in downstream which irrigating vegetables with the polluted water of Karoonriver with sewage was main reason of vegetables microbial contamination. A leak of partially treated sewage water into a creek used for irrigation of commercial produce resulted in contamination of a crop of cabbages with at least six different serotypes of Escherichia coli(29). The second place with the highest pollution based on Coliform is the Pol 5 which due to pouring urban sewage and watering vegetables with Karoonriver. Irrigation and fertilization of vegetable crops with raw human and raw animal wastes or contaminated surface water can contribute the etiological agents of infectious hepatitis, typhoid fever, shigellosis, salmonellosis, listeriosis, viral gastroenteritis, cholera, amoebiasis, giardiasis, and other enteric as well as parasitic diseases (29) Hamidieh and Sheiban had more Ascaris parasite ova than other areas which were due to watering with polluted water or using animal fertilizer. Vegetables are important sources of pollution in transmission of disease agents such as virus, bacteria and parasite. Consumption of the raw vegetables has a key role in their contagion. Detergents can separate contamination and fat from vegetables leaves (30). Raw vegetables, especially lettuce, have been identified as a common cause of travelers’ diarrhea (31) contamination of vegetables with wide leaves such as lettuce is more than others (32). There are many studies conducted in Iran in relation to the transmission significance of parasite illnesses. In these researches the reported amount of contamination is high to compare others. Most separated varieties related to animal parasites such as Nematode, Mite, Hymenolepis is Nana and Ascaris. According the literature 5.5% of the polluted vegetables in Turkey (32-35) and 2% in Norway (29) were polluted with Giardia. The obtained results of the previous studies are different from that of the present study. The difference may be due to geographical, Factors, climate, the number of collecting samples, the employed method for identifying parasite, the kind of irrigating region, using human and animal fertilizer, the amount of parasite pollution in human, and transportation of vegetables. In 2011 the amount of pollution with Larvae and nematode was reported 40% and 60%, respectively but Ascaris, Trichoris, Strongyloides and hookworms, nematodes were not observed (18). Other studies conducted in Iran investigating Nematode pollution revealed that there is some pollution with the human nematodes, e.g. in Esfahan the amount of pollution with parasite ova reported 24.2% (36), in Ramhormoz it was 4.8% (19), and in Zabol it was reported 10.9% (18).
Comparison with standards, According to New Zealand fecal Coliform bacteria standard recorded the acceptable amount of 100 (MPN/g) and the maximum acceptable amount of 1000 (MPN/g) (37). Standard of Canada reported the maximum acceptable amount of 1000 MPN/g. (38)

Conclusion

According to the results of the study, the highest microbial pollution of Ahvaz vegetable consumption is found in Kouttabollah in Ahvaz downtown. In the second place, the Pol 5, Hamidieh and Sheiban had the highest microbial pollution. The pollution reason is discharging urban wastewater without treatment to Karoon and Karkheh rivers. Therefore, complete wastewater treatment plant in Ahvaz, Hamidieh, and Sheiban should be taken into account seriously.

Footnotes

Acknowledgments:
This study was supported by the Student Research Committee of Ahvaz Jundishapur University of Medical Sciences.

Conflict of Interest:
The authors declared no conflict of interest.

Funding/Support
This study was supported by Ahvaz Jundishapur University of Medical Sciences.

References

13. Davami M, Mahdavipour A, Mosayebi M, Khazaifi M. Survey of parasitic contamination in...

